图书介绍
线性与非线性积分方程,方法及应用 英文PDF|Epub|txt|kindle电子书版本网盘下载
![线性与非线性积分方程,方法及应用 英文](https://www.shukui.net/cover/6/30779670.jpg)
- (美)佤斯瓦茨著 著
- 出版社: 北京:高等教育出版社
- ISBN:9787040316940
- 出版时间:2011
- 标注页数:639页
- 文件大小:16MB
- 文件页数:656页
- 主题词:线性积分方程-英文;非线性积分方程-英文
PDF下载
下载说明
线性与非线性积分方程,方法及应用 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PartⅠ Linear Integral Equations3
1 Preliminaries3
1.1 Taylor Series4
1.2 Ordinary Differential Equations7
1.2.1 First Order Linear Differential Equations7
1.2.2 Second Order Linear Differential Equations9
1.2.3 The Series Solution Method13
1.3 Leibnitz Rule for Differentiation of Integrals17
1.4 Reducing Multiple Integrals to Single Integrals19
1.5 Laplace Transform22
1.5.1 Properties of Laplace Transforms23
1.6 Infinite Geometric Series28
References30
2 Introductory Concepts of Integral Equations33
2.1 Classification of Integral Equations34
2.1.1 Fredholm Integral Equations34
2.1.2 Volterra Integral Equations35
2.1.3 Volterra-Fredholm Integral Equations35
2.1.4 Singular Integral Equations36
2.2 Classification of Integro-Differential Equations37
2.2.1 Fredholm Integro-Differential Equations38
2.2.2 Volterra Integro-Differential Equations38
2.2.3 Volterra-Fredholm Integro-Differential Equations39
2.3 Linearity and Homogeneity40
2.3.1 Linearity Concept40
2.3.2 Homogeneity Concept41
2.4 Origins of Integral Equations42
2.5 Converting IVP to Volterra Integral Equation42
2.5.1 Converting Volterra Integral Equation to IVP47
2.6 Converting BVP to Fredholm Integral Equation49
2.6.1 Converting Fredholm Integral Equation to BVP54
2.7 Solution of an Integral Equation59
References63
3 Volterra Integral Equations65
3.1 Introduction65
3.2 Volterra Integral Equations of the Second Kind66
3.2.1 The Adomian Decomposition Method66
3.2.2 The Modified Decomposition Method73
3.2.3 The Noise Terms Phenomenon78
3.2.4 The Variational Iteration Method82
3.2.5 The Successive Approximations Method95
3.2.6 The Laplace Transform Method99
3.2.7 The Series Solution Method103
3.3 Volterra Integral Equations of the First Kind108
3.3.1 The Series Solution Method108
3.3.2 The Laplace Transform Method111
3.3.3 Conversion to a Volterra Equation of the Second Kind114
References118
4 Fredholm Integral Equations119
4.1 Introduction119
4.2 Fredholm Integral Equations of the Second Kind121
4.2.1 The Adomian Decomposition Method121
4.2.2 The Modified Decomposition Method128
4.2.3 The Noise Terms Phenomenon133
4.2.4 The Variational Iteration Method136
4.2.5 The Direct Computation Method141
4.2.6 The Successive Approximations Method146
4.2.7 The Series Solution Method151
4.3 Homogeneous Fredholm Integral Equation154
4.3.1 The Direct Computation Method155
4.4 Fredholm Integral Equations of the First Kind159
4.4.1 The Method of Regularization161
4.4.2 The Homotopy Perturbation Method166
References173
5 Volterra Integro-Differential Equations175
5.1 Introduction175
5.2 Volterra Integro-Differential Equations of the Second Kind176
5.2.1 The Adomian Decomposition Method176
5.2.2 The Variational Iteration Method181
5.2.3 The Laplace Transform Method186
5.2.4 The Series Solution Method190
5.2.5 Converting Volterra Integro-Differential Equations to Initial Value Problems195
5.2.6 Converting Volterra Integro-Differential Equation to Volterra Integral Equation199
5.3 Volterra Integro-Differential Equations of the First Kind203
5.3.1 Laplace Transform Method204
5.3.2 The Variational Iteration Method206
References211
6 Fredholm Integro-Differential Equations213
6.1 Introduction213
6.2 Fredholm Integro-Differential Equations of the Second Kind214
6.2.1 The Direct Computation Method214
6.2.2 The Variational Iteration Method218
6.2.3 The Adomian Decomposition Method223
6.2.4 The Series Solution Method230
References234
7 Abel's Integral Equation and Singular Integral Equations237
7.1 Introduction237
7.2 Abel's Integral Equation238
7.2.1 The Laplace Transform Method239
7.3 The Generalized Abel's Integral Equation242
7.3.1 The Laplace Transform Method243
7.3.2 The Main Generalized Abel Equation245
7.4 The Weakly Singular Volterra Equations247
7.4.1 The Adomian Decomposition Method248
7.4.2 The Successive Approximations Method253
7.4.3 The Laplace Transform Method257
Reterences260
8 Volterra-Fredholm Integral Equations261
8.1 Introduction261
8.2 The Volterra-Fredholm Integral Equations262
8.2.1 The Series Solution Method262
8.2.2 The Adomian Decomposition Method266
8.3 The Mixed Volterra-Fredholm Integral Equations269
8.3.1 The Series Solution Method270
8.3.2 The Adomian Decomposition Method273
8.4 The Mixed Volterra-Fredholm Integral Equations in Two Variables277
8.4.1 The Modified Decomposition Method278
References283
9 Volterra-Fredholm Integro-Differential Equations285
9.1 Introduction285
9.2 The Volterra-Fredholm Integro-Differential Equation285
9.2.1 The Series Solution Method285
9.2.2 The Variational Iteration Method289
9.3 The Mixed Volterra-Fredholm Integro-Differential Equations296
9.3.1 The Direct Computation Method296
9.3.2 The Series Solution Method300
9.4 The Mixed Volterra-Fredholm Integro-Differential Equations in Two Variables303
9.4.1 The Modified Decomposition Method304
References309
10 Systems of Volterra Integral Equations311
10.1 Introduction311
10.2 Systems of Volterra Integral Equations of the Second Kind312
10.2.1 The Adomian Decomposition Method312
10.2.2 The Laplace Transform Method318
10.3 Systems of Volterra Integral Equations of the First Kind323
10.3.1 The Laplace Transform Method323
10.3.2 Conversion to a Volterra System of the Second Kind327
10.4 Systems of Volterra Integro-Differential Equations328
10.4.1 The Variational Iteration Method329
10.4.2 The Laplace Transform Method335
References339
11 Systems of Fredholm Integral Equations341
11.1 Introduction341
11.2 Systems of Fredholm Integral Equations342
11.2.1 The Adomian Decomposition Method342
11.2.2 The Direct Computation Method347
11.3 Systems of Fredholm Integro-Differential Equations352
11.3.1 The Direct Computation Method353
11.3.2 The Variational Iteration Method358
References364
12 Systems of Singular Integral Equations365
12.1 Introduction365
12.2 Systems of Generalized Abel Integral Equations366
12.2.1 Systems of Generalized Abel Integral Equations in Two Unknowns366
12.2.2 Systems of Generalized Abel Integral Equations in Three Unknowns370
12.3 Systems of the Weakly Singular Volterra Integral Equations374
12.3.1 The Laplace Transform Method374
12.3.2 The Adomian Decomposition Method378
References383
PartII Nonlinear Integral Equations387
13 Nonlinear Volterra Integral Equations387
13.1 Introduction387
13.2 Existence of the Solution for Nonlinear Volterra Integral Equations388
13.3 Nonlinear Volterra Integral Equations of the Second Kind388
13.3.1 The Successive Approximations Method389
13.3.2 The Series Solution Method393
13.3.3 The Adomian Decomposition Method397
13.4 Nonlinear Volterra Integral Equations of the First Kind404
13.4.1 The Laplace Transform Method405
13.4.2 Conversion to a Volterra Equation of the Second Kind408
13.5 Systems of Nonlinear Volterra Integral Equations411
13.5.1 Systems of Nonlinear Volterra Integral Equations of the Second Kind412
13.5.2 Systems of Nonlinear Volterra Integral Equations of the First Kind417
References423
14 Nonlinear Volterra Integro-Differential Equations425
14.1 Introduction425
14.2 Nonlinear Volterra Integro-Differential Equations of the Second Kind426
14.2.1 The Combined Laplace Transform-Adomian Decomposition Method426
14.2.2 The Variational Iteration Method432
14.2.3 The Series Solution Method436
14.3 Nonlinear Volterra Integro-Differential Equations of the First Kind440
14.3.1 The Combined Laplace Transform-Adomian Decomposition Method440
14.3.2 Conversion to Nonlinear Volterra Equation of the Second Kind446
14.4 Systems of Nonlinear Volterra Integro-Differential Equations450
14.4.1 The Variational Iteration Method451
14.4.2 The Combined Laplace Transform-Adomian Decomposition Method456
References465
15 Nonlinear Fredholm Integral Equations467
15.1 Introduction467
15.2 Existence of the Solution for Nonlinear Fredholm Integral Equations468
15.2.1 Bifurcation Points and Singular Points469
15.3 Nonlinear Fredholm Integral Equations of the Second Kind469
15.3.1 The Direct Computation Method470
15.3.2 The Series Solution Method476
15.3.3 The Adomian Decomposition Method480
15.3.4 The Successive Approximations Method485
15.4 Homogeneous Nonlinear Fredholm Integral Equations490
15.4.1 The Direct Computation Method490
15.5 Nonlinear Fredholm Integral Equations of the First Kind494
15.5.1 The Method of Regularization495
15.5.2 The Homotopy Perturbation Method500
15.6 Systems of Nonlinear Fredholm Integral Equations505
15.6.1 The Direct Computation Method506
15.6.2 The Modified Adomian Decomposition Method510
References515
16 Nonlinear Fredholm Integro-Differential Equations517
16.1 Introduction517
16.2 Nonlinear Fredholm Integro-Differential Equations518
16.2.1 The Direct Computation Method518
16.2.2 The Variational Iteration Method522
16.2.3 The Series Solution Method526
16.3 Homogeneous Nonlinear Fredholm Integro-Differential Equations530
16.3.1 The Direct Computation Method530
16.4 Systems of Nonlinear Fredholm Integro-Differential Equations535
16.4.1 The Direct Computation Method535
16.4.2 The Variational Iteration Method540
References545
17 Nonlinear Singular Integral Equations547
17.1 Introduction547
17.2 Nonlinear Abel's Integral Equation548
17.2.1 The Laplace Transform Method549
17.3 The Generalized Nonlinear Abel Equation552
17.3.1 The Laplace Transform Method553
17.3.2 The Main Generalized Nonlinear Abel Equation556
17.4 The Nonlinear Weakly-Singular Volterra Equations559
17.4.1 The Adomian Decomposition Method559
17.5 Systems of Nonlinear Weakly-Singular Volterra Integral Equations562
17.5.1 The Modified Adomian Decomposition Method563
References567
18 Applications of Integral Equations569
18.1 Introduction569
18.2 Volterra's Population Model570
18.2.1 The Variational Iteration Method571
18.2.2 The Series Solution Method572
18.2.3 The PadéApproximants573
18.3 Integral Equations with Logarithmic Kernels574
18.3.1 Second Kind Fredholm Integral Equation with a Logarithmic Kernel577
18.3.2 First Kind Fredholm Integral Equation with a Logarithmic Kernel580
18.3.3 Another First Kind Fredholm Integral Equation with a Logarithmic Kernel583
18.4 The Fresnel Integrals584
18.5 The Thomas-Fermi Equation587
18.6 Heat Transfer and Heat Radiation590
18.6.1 Heat Transfer:Lighthill Singular Integral Equation590
18.6.2 Heat Radiation in a Semi-Infinite Solid592
References594
Appendix A Table of Indefinite Integrals597
A.1 Basic Forms597
A.2 Trigonometric Forms597
A.3 Inverse Trigonometric Forms598
A.4 Exponential and Logarithmic Forms598
A.5 Hyperbolic Forms599
A.6 Other Forms599
Appendix B Integrals Involving Irrational Algebraic Functions600
B.1 Integrals Involving?,n is an integer,n≥0600
B.2 Integrals Involving?,n is an odd integer,n≥1600
Appendix C Series Representations601
C.1 Exponential Functions Series601
C.2 Trigonometric Functions601
C.3 Inverse Trigonometric Functions602
C.4 Hyperbolic Functions602
C.5 Inverse Hyperbolic Functions602
C.6 Logarithmic Functions602
Appendix D The Error and the Complementary Error Functions603
D.1 The Error Function603
D.2 The Complementary Error Function603
Appendix E Gamma Function604
Appendix F Infinite Series605
F.1 Numerical Series605
F.2 Trigonometric Series605
Appendix G The Fresnel Integrals607
G.1 The Fresnel Cosine Integral607
G.2 The Fresnel Sine Integral607
Answers609
Index637