图书介绍

拓扑流形引论PDF|Epub|txt|kindle电子书版本网盘下载

拓扑流形引论
  • John M.Lee著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7506259591
  • 出版时间:2003
  • 标注页数:385页
  • 文件大小:59MB
  • 文件页数:405页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

拓扑流形引论PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Introduction1

What Are Manifolds?1

Why Study Manifolds?4

2 Topological Spaces17

Topologies17

Bases27

Manifolds30

Problems36

3 New Spaces from Old39

Subspaces39

Product Spaces48

Quotient Spaces52

Group Actions58

Problems62

4 Connectedness and Compactness65

Connectedness65

Compactness73

Locally Compact Hausdorff Spaces81

Problems88

5 Simplicial Complexes91

Euclidean Simplicial Complexes92

Abstract Simplicial Complexes96

Triangulation Theorems102

Orientations105

Combinatorial Invariants109

Problems114

6 Curves and Surfaces117

Classification of Curves118

Surfaces119

Connected Sums126

Polygonal Presentations of Surfaces129

Classification of Surface Presentations137

Combinatorial Invariants142

Problems146

7 Homotopy and the Fundamental Group147

Homotopy148

The Fundamental Group150

Homomorphisms Induced by Continuous Maps158

Homotopy Equivalence161

Higher Homotopy Groups169

Categories and Functors170

Problems176

8 Circles and Spheres179

The Fundamental Group of the Circle180

Proofs of the Lifting Lemmas183

Fundamental Groups of Spheres187

Fundamental Groups of Product Spaces188

Fundamental Groups of Manifolds189

Problems191

9 Some Group Theory193

Free Products193

Free Groups199

Presentations of Groups201

Free Abelian Groups203

Problems208

10 The Seifert-Van Kampen Theorem209

Statement of the Theorem210

Applications212

Proof of the Theorem221

Distinguishing Manifolds227

Problems230

11 Covering Spaces233

Definitions and Basic Properties234

Covering Maps and the Fundamental Group239

The Covering Group247

Problems253

12 Classification of Coverings257

Covering Homomorphisms258

The Universal Covering Space261

Proper Group Actions266

The Classification Theorem283

Problems289

13 Homology291

Singular Homology Groups292

Homotopy Invariance300

Homology and the Fundamental Group304

The Mayer-Vietoris Theorem308

Applications318

The Homology of a Simplicial Complex323

Cohomology329

Problems334

Appendix:Review of Prerequisites337

Set Theory337

Metric Spaces347

Group Theory352

References359

Index362

热门推荐