图书介绍
拓扑流形引论PDF|Epub|txt|kindle电子书版本网盘下载
- John M.Lee著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:7506259591
- 出版时间:2003
- 标注页数:385页
- 文件大小:59MB
- 文件页数:405页
- 主题词:
PDF下载
下载说明
拓扑流形引论PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
What Are Manifolds?1
Why Study Manifolds?4
2 Topological Spaces17
Topologies17
Bases27
Manifolds30
Problems36
3 New Spaces from Old39
Subspaces39
Product Spaces48
Quotient Spaces52
Group Actions58
Problems62
4 Connectedness and Compactness65
Connectedness65
Compactness73
Locally Compact Hausdorff Spaces81
Problems88
5 Simplicial Complexes91
Euclidean Simplicial Complexes92
Abstract Simplicial Complexes96
Triangulation Theorems102
Orientations105
Combinatorial Invariants109
Problems114
6 Curves and Surfaces117
Classification of Curves118
Surfaces119
Connected Sums126
Polygonal Presentations of Surfaces129
Classification of Surface Presentations137
Combinatorial Invariants142
Problems146
7 Homotopy and the Fundamental Group147
Homotopy148
The Fundamental Group150
Homomorphisms Induced by Continuous Maps158
Homotopy Equivalence161
Higher Homotopy Groups169
Categories and Functors170
Problems176
8 Circles and Spheres179
The Fundamental Group of the Circle180
Proofs of the Lifting Lemmas183
Fundamental Groups of Spheres187
Fundamental Groups of Product Spaces188
Fundamental Groups of Manifolds189
Problems191
9 Some Group Theory193
Free Products193
Free Groups199
Presentations of Groups201
Free Abelian Groups203
Problems208
10 The Seifert-Van Kampen Theorem209
Statement of the Theorem210
Applications212
Proof of the Theorem221
Distinguishing Manifolds227
Problems230
11 Covering Spaces233
Definitions and Basic Properties234
Covering Maps and the Fundamental Group239
The Covering Group247
Problems253
12 Classification of Coverings257
Covering Homomorphisms258
The Universal Covering Space261
Proper Group Actions266
The Classification Theorem283
Problems289
13 Homology291
Singular Homology Groups292
Homotopy Invariance300
Homology and the Fundamental Group304
The Mayer-Vietoris Theorem308
Applications318
The Homology of a Simplicial Complex323
Cohomology329
Problems334
Appendix:Review of Prerequisites337
Set Theory337
Metric Spaces347
Group Theory352
References359
Index362