图书介绍
an introduction to bioinformatics algorithmsPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社:
- ISBN:
- 出版时间:未知
- 标注页数:0页
- 文件大小:110MB
- 文件页数:453页
- 主题词:
PDF下载
下载说明
an introduction to bioinformatics algorithmsPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Introduction1
2 Algorithms and Complexity7
2.1 What Is an Algorithm?7
2.2 Biological Algorithms versus Computer Algorithms14
2.3 The Change Problem17
2.4 Correct versus Incorrect Algorithms20
2.5 Recursive Algorithms24
2.6 Iterative versus Recursive Algorithms28
2.7 Fast versus Slow Algorithms33
2.8 Big-O Notation37
2.9 Algorithm Design Techniques40
2.9.1 Exhaustive Search41
2.9.2 Branch-and-Bound Algorithms42
2.9.3 Greedy Algorithms43
2.9.4 Dynamic Programming43
2.9.5 Divide-and-Conquer Algorithms48
2.9.6 Machine Learning48
2.9.7 Randomized Algorithms48
2.10 Tractable versus Intractable Problems49
2.11 Notes51
Biobox: Richard Karp52
2.12 Problems54
3 Molecular Biology Primer57
3.1 What Is Life Made Of?57
3.2 What Is the Genetic Material?59
3.3 What Do Genes Do?60
3.4 What Molecule Codes for Genes?61
3.5 What Is the Structure of DNA?61
3.6 What Carries Information between DNA and Proteins?63
3.7 How Are Proteins Made?65
3.8 How Can We Analyze DNA?67
3.8.1 Copying DNA67
3.8.2 Cutting and Pasting DNA71
3.8.3 Measuring DNA Length72
3.8.4 Probing DNA72
3.9 How Do Individuals of a Species Differ?73
3.10 How Do Different Species Differ?74
3.11 Why Bioinformatics?75
Biobox: Russell Doolittle79
4 Exhaustive Search83
4.1 Restriction Mapping83
4.2 Impractical Restriction Mapping Algorithms87
4.3 A Practical Restriction Mapping Algorithm89
4.4 Regulatory Motifs in DNA Sequences91
4.5 Profiles93
4.6 The Motif Finding Problem97
4.7 Search Trees100
4.8 Finding Motifs108
4.9 Finding a Median String111
4.10 Notes114
Biobox: Gary Stormo116
4.11 Problems119
5 Greedy Algorithms125
5.1 Genome Rearrangements125
5.2 Sorting by Reversals127
5.3 Approximation Algorithms131
5.4 Breakpoints: A Different Face of Greed132
5.5 A Greedy Approach to Motif Finding136
5.6 Notes137
Biobox: David Sankoff139
5.7 Problems143
6 Dynamic Programming Algorithms147
6.1 The Power of DNA Sequence Comparison147
6.2 The Change Problem Revisited148
6.3 The Manhattan Tourist Problem153
6.4 Edit Distance and Alignments167
6.5 Longest Common Subsequences172
6.6 Global Sequence Alignment177
6.7 Scoring Alignments178
6.8 Local Sequence Alignment180
6.9 Alignment with Gap Penalties184
6.10 Multiple Alignment185
6.11 Gene Prediction193
6.12 Statistical Approaches to Gene Prediction197
6.13 Similarity-Based Approaches to Gene Prediction200
6.14 Spliced Alignment203
6.15 Notes207
Biobox: Michael Waterman209
6.16 Problems211
7 Divide-and-Conquer Algorithms227
7.1 Divide-and-Conquer Approach to Sorting227
7.2 Space-Efficient Sequence Alignment230
7.3 Block Alignment and the Four-Russians Speedup234
7.4 Constructing Alignments in Subquadratic Time238
7.5 Notes240
Biobox: Webb Miller241
7.6 Problems244
8 Graph Algorithms247
8.1 Graphs247
8.2 Graphs and Genetics260
8.3 DNA Sequencing262
8.4 Shortest Superstring Problem264
8.5 DNA Arrays as an Alternative Sequencing Technique265
8.6 Sequencing by Hybridization268
8.7 SBH as a Hamiltonian Path Problem271
8.8 SBH as an Eulerian Path Problem272
8.9 Fragment Assembly in DNA Sequencing275
8.10 Protein Sequencing and Identification280
8.11 The Peptide Sequencing Problem284
8.12 Spectrum Graphs287
8.13 Protein Identification via Database Search290
8.14 Spectral Convolution292
8.15 Spectral Alignment293
8.16 Notes299
8.17 Problems302
9 Combinatorial Pattern Matching311
9.1 Repeat Finding311
9.2 Hash Tables313
9.3 Exact Pattern Matching316
9.4 Keyword Trees318
9.5 Suffix Trees320
9.6 Heuristic Similarity Search Algorithms324
9.7 Approximate Pattern Matching326
9.8 BLAST: Comparing a Sequence against a Database330
9.9 Notes331
Biobox: Gene Myers333
9.10 Problems337
10 Clustering and Trees339
10.1 Gene Expression Analysis339
10.2 Hierarchical Clustering343
10.3 k-Means Clustering346
10.4 Clustering and Corrupted Cliques348
10.5 Evolutionary Trees354
10.6 Distance-Based Tree Reconstruction358
10.7 Reconstructing Trees from Additive Matrices361
10.8 Evolutionary Trees and Hierarchical Clustering366
10.9 Character-Based Tree Reconstruction368
10.10 Small Parsimony Problem370
10.11 Large Parsimony Problem374
10.12 Notes379
Biobox: Ron Shamir380
10.13 Problems384
11 Hidden Markov Models387
11.1 CC-Islands and the “Fair Bet Casino”387
11.2 The Fair Bet Casino and Hidden Markov Models390
11.3 Decoding Algorithm393
11.4 HMM Parameter Estimation397
11.5 Profile HMM Alignment398
11.6 Notes400
Biobox: David Haussler403
11.7 Problems407
12 Randomized Algorithms409
12.1 The Sorting Problem Revisited409
12.2 Gibbs Sampling412
12.3 Random Projections414
12.4 Notes416
12.5 Problems417
Using Bioinformatics Tools419
Bibliography421
Index428