图书介绍
若干演化为球面的曲率流PDF|Epub|txt|kindle电子书版本网盘下载
- 郭顺滋 著
- 出版社: 北京:科学出版社
- ISBN:9787030568915
- 出版时间:2018
- 标注页数:209页
- 文件大小:20MB
- 文件页数:223页
- 主题词:曲率-研究-英文
PDF下载
下载说明
若干演化为球面的曲率流PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter1 Preliminary1
1.1 Notations1
1.2 Some useful properties4
1.3 Graphical submanifolds7
1.4 Interior Holder estimates10
Chapter2 Hβ-flow for h-convex Hypersurfaces in H n k+113
2.1 Introduction and main results13
2.2 Short-time existence and evolution equations16
2.3 Preserving h-convex22
2.4 Long-time existence27
2.5 Contraction to a point32
Chapter3 Hβ-flow for Pinched Hypersurfaces in H n k+134
3.1 Introduction34
3.2 Preserving pinching of curvature38
3.3 The pinching estimate47
3.4 The normalized equations51
3.5 Convergence to a unit geodesic sphere55
3.6 Exponential convergence63
Chapter4 Volume-preserving Hβ m-flow in H n k+166
4.1 Introduction66
4.2 Short-time existence and evolution equations71
4.3 Preserving pinching78
4.4 Upper bound on F84
4.5 Long-time existence93
4.6 Exponential convergence to a geodesic sphere103
Chapter5 φ(H)-flow in Rn+1107
5.1 Introduction and main results107
5.2 Short-time existence and evolution equations111
5.3 Long-time existence115
5.4 Preserving convexity118
Chapter6 φ(H)-flow in H n k+1125
6.1 Introduction and main results125
6.2 Short-time existence and evolution equations128
6.3 Preserving h-convex133
6.4 Long-time existence139
6.5 Contraction to a point145
Chapter7 Mixed Volume Preserving Fβ-flow in Rn+1146
7.1 Introduction and main results146
7.2 Short-time existence and evolution equations151
7.3 Preserving pinching155
7.4 Upper bound on φ(F)164
7.5 Long-time existence169
7.6 Exponential convergence to the sphere175
Chapter8 Forced MCF of Submanifolds in Rn+p184
8.1 Introduction184
8.2 Evolution equations189
8.3 Relationship with the mean curvature flow191
8.4 Asymptotic behavior of submanifolds194
Bibliography201
编后记209