图书介绍
高等数学同步训练PDF|Epub|txt|kindle电子书版本网盘下载
![高等数学同步训练](https://www.shukui.net/cover/42/31098390.jpg)
- 宋介珠,郑维英主编;邢军,黄胜绢,于君凤副主编 著
- 出版社: 沈阳:东北大学出版社
- ISBN:9787811025545
- 出版时间:2008
- 标注页数:154页
- 文件大小:33MB
- 文件页数:162页
- 主题词:高等数学-高等学校-习题
PDF下载
下载说明
高等数学同步训练PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
第一章 函数与极限1
第一节 映射与函数1
第二节 数列的极限2
第三节 函数的极限2
第四节 无穷小与无穷大3
第五节 极限运算法则4
第六节 极限存在准则 两个重要极限5
第七节 无穷小的比较6
第八节 函数的连续性与间断点7
第九节 连续函数的运算与初等函数的连续性8
第十节 闭区间上连续函数的性质8
第二章 导数与微分9
第一节 导数概念9
第二节 函数的求导法则10
第三节 高阶导数12
第四节 隐函数及由参数方程所确定的函数的导数13
第五节 函数的微分15
第三章 中值定理与导数的应用17
第一节 微分中值定理17
第二节 洛必达法则19
第三节 泰勒公式20
第四节 函数的单调性与曲线的凹凸性21
第五节 函数的极值与最大值、最小值23
第六节 函数图形的描绘25
第七节 曲率26
第四章 不定积分27
第一节 不定积分的概念与性质27
第二节 换元积分法29
第三节 分部积分法33
第四节 有理函数积分35
第五章 定积分37
第一节定积分的概念与性质37
第二节 微积分的基本公式39
第三节 定积分的换元法和分部积分法41
第四节 反常积分45
第六章 定积分的应用47
第一节 定积分的元素法47
第二节 定积分在几何学上的应用47
第三节 定积分在物理学上的应用51
第七章 空间解析几何与向量代数53
第一节 向量及其线性运算53
第二节 数量积 向量积55
第三节 曲面及其方程57
第四节 空间曲线及其方程59
第五节 平面及其方程60
第六节 空间直线及其方程61
习题课与自测题一63
习题课与自测题(第一章)63
习题课与自测题(第二章)65
习题课与自测题(第三章)67
习题课与自测题(第四章)69
习题课与自测题(第五章)70
习题课与自测题(第六章)72
习题课与自测题(第七章)73
模拟试题一75
第一套75
第二套76
第三套77
第四套78
第八章 多元函数微分法及其应用79
第一节 多元函数的基本概念79
第二节 偏导数80
第三节 全微分82
第四节 多元复合函数的求导法则83
第五节 隐函数的求导公式85
第六节 多元函数微分学的几何应用87
第七节 方向导数与梯度89
第八节 多元函数的极值及其求法90
第九章 重积分93
第一节 二重积分的概念与性质93
第二节 二重积分的计算法94
第三节 三重积分97
第四节 重积分的应用101
第十章 曲线积分与曲面积分103
第一节 对弧长的曲线积分103
第二节 对坐标的曲线积分105
第三节 格林公式及其应用107
第四节 对面积的曲面积分109
第五节 对坐标的曲面积分111
第六节 高斯公式 通量与散度113
第七节 斯托克斯公式 环流量与旋度114
第十一章 无穷级数115
第一节常数项级数的概念和性质115
第二节 常数项级数的审敛法116
第三节 幂级数119
第四节 函数展开成幂级数121
第五节 傅立叶级数123
第六节 一般周期函数的傅立叶级数126
第十二章 微分方程127
第一节 微分方程的基本概念127
第二节 可分离变量的微分方程128
第三节 齐次方程129
第四节 一阶线性微分方程129
第五节 全微分方程131
第六节 可降阶的高阶微分方程132
第七节 高阶线性微分方程133
第八节 常系数齐次线性微分方程134
第九节 常系数非齐次线性微分方程135
习题课与自测题二137
习题课与自测题(第八章)137
习题课与自测题(第九章)139
习题课与自测题(第十章)142
习题课与自测题(第十一章)144
习题课与自测题(第十二章)147
模拟试题二150
第一套150
第二套151
第三套152
第四套153