图书介绍
套利数学PDF|Epub|txt|kindle电子书版本网盘下载
![套利数学](https://www.shukui.net/cover/34/31097307.jpg)
- (瑞士)Freddy Delbaen著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:9787510027376
- 出版时间:2010
- 标注页数:373页
- 文件大小:142MB
- 文件页数:389页
- 主题词:经济数学-英文
PDF下载
下载说明
套利数学PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ A Guided Tour to Arbitrage Theory3
1 The Story in a Nutshell3
1.1 Arbitrage3
1.2 An Easy Model of a Financial Market4
1.3 Pricing by No-Arbitrage5
1.4 Variations of the Example7
1.5 Martingale Measures7
1.6 The Fundamental Theorem of Asset Pricing8
2 Models of Financial Markets on Finite Probability Spaces11
2.1 Description of the Model11
2.2 No-Arbitrage and the Fundamental Theorem of Asset Pricing16
2.3 Equivalence of Single-period with Multiperiod Arbitrage22
2.4 Pricing by No-Arbitrage23
2.5 Change of Numéraire27
2.6 Kramkov's Optional Decomposition Theorem31
3 Utility Maximisation on Finite Probability Spaces33
3.1 The Complete Case34
3.2 The Incomplete Case41
3.3 The Binomial and the Trinomial Model45
4 Bachelier and Black-Scholes57
4.1 Introduction to Continuous Time Models57
4.2 Models in Continuous Time57
4.3 Bachelier's Model58
4.4 The Black-Scholes Model60
5 The Kreps-Yan Theorem71
5.1 A General Framework71
5.2 No Free Lunch76
6 The Dalang-Morton-Willinger Theorem85
6.1 Statement of the Theorem85
6.2 The Predictable Range86
6.3 The Selection Principle89
6.4 The Closedness of the Cone C92
6.5 Proof of the Dalang-Morton-Willinger Theorem for T=194
6.6 A Utility-based Proof of the DMW Theorem for T=196
6.7 Proof of the Dalang-Morton-Willinger Theorem for T≥1 by Induction on T102
6.8 Proof of the Closedness of K in the Case T≥1103
6.9 Proof of the Closedness of C in the Case T≥1 under the(NA)Condition105
6.10 Proof of the Dalang-Morton-Willinger Theorem for T≥1 using the Closedness of C107
6.11 Interpretation of the L∞-Bound in the DMW Theorem108
7 A Primer in Stochastic Integration111
7.1 The Set-up111
7.2 Introductory on Stochastic Processes112
7.3 Strategies,Semi-martingales and Stochastic Integration117
8 Arbitrage Theory in Continuous Time:an Overview129
8.1 Notation and Preliminaries129
8.2 The Crucial Lemma131
8.3 Sigma-martingales and the Non-locally Bounded Case140
Part Ⅱ The Original Papers149
9 A General Version of the Fundamental Theorem of Asset Pricing(1994)149
9.1 Introduction149
9.2 Definitions and Preliminary Results155
9.3 No Free Lunch with Vanishing Risk160
9.4 Proof of the Main Theorem164
9.5 The Set of Representing Measures181
9.6 No Free Lunch with Bounded Risk186
9.7 Simple Integrands190
9.8 Appendix:Some Measure Theoretical Lemmas202
10 A Simple Counter-Example to Several Problems in the Theory of Asset Pricing(1998)207
10.1 Introduction and Known Results207
10.2 Construction of the Example210
10.3 Incomplete Markets212
11 The No-Arbitrage Property under a Change of Numéraire(1995)217
11.1 Introduction217
11.2 Basic Theorems219
11.3 Duality Relation222
11.4 Hedging and Change of Numéraire225
12 The Existence of Absolutely Continuous Local Martingale Measures(1995)231
12.1 Introduction231
12.2 The Predictable Radon-Nikod?m Derivative235
12.3 The No-Arbitrage Property and Immediate Arbitrage239
12.4 The Existence of an Absolutely Continuous Local Martingale Measure244
13 The Banach Space of Workable Contingent Claims in Arbitrage Theory(1997)251
13.1 Introduction251
13.2 Maximal Admissible Contingent Claims255
13.3 The Banach Space Generated by Maximal Contingent Claims261
13.4 Some Results on the Topology of G266
13.5 The Value of Maximal Admissible Contingent Claims on the Set Me272
13.6 The Space G under a Numéraire Change274
13.7 The Closure of G∞ and Related Problems276
14 The Fundamental Theorem of Asset Pricing for Unbounded Stochastic Processes(1998)279
14.1 Introduction279
14.2 Sigma-martingales280
14.3 One-period Processes284
14.4 The General Rd-valued Case294
14.5 Duality Results and Maximal Elements305
15 A Compactness Principle for Bounded Sequences of Martingales with Applications(1999)319
15.1 Introduction319
15.2 Notations and Preliminaries326
15.3 An Example332
15.4 A Substitute of Compactness for Bounded Subsets of H1334
15.4.1 Proof of Theorem 15.A335
15.4.2 Proof of Theorem 15.C337
15.4.3 Proof of Theorem 15.B339
15.4.4 A proof of M.Yor's Theorem345
15.4.5 Proof of Theorem 15.D346
15.5 Application352
Part Ⅲ Bibliography359
References359