图书介绍

黎曼流形PDF|Epub|txt|kindle电子书版本网盘下载

黎曼流形
  • John M. Lee著 著
  • 出版社: 北京;西安:世界图书出版公司
  • ISBN:7506265516
  • 出版时间:2003
  • 标注页数:224页
  • 文件大小:28MB
  • 文件页数:242页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

黎曼流形PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 What Is Curvature?1

The Euclidean Plane2

Surfaces in Space4

Curvature in Higher Dimensions8

2 Review of Tensors,Manifolds,and Vector Bundles11

Tensors on a Vector Space11

Manifolds14

Vector Bundles16

Tensor Bundles and Tensor Fields19

3 Definitions and Examples of Riemannian Metrics23

Riemannian Metrics23

Elementary Constructions Associated with Riemannian Metrics27

Generalizations of Riemannian Metrics30

The Model Spaces of Riemannian Geometry33

Problems43

4 Connections47

The Problem of Differentiating Vector Fields48

Connections49

Vector Fields Along Curves55

Geodesics58

Problems63

5 Riemannian Geodesics65

The Riemannian Connection65

The Exponential Map72

Normal Neighborhoods and Normal Coordinates76

Geodesics of the Model Spaces81

Problems87

6 Geodesics and Distance91

Lengths and Distances on Riemannian Manifolds91

Geodesics and Minimizing Curves96

Completeness108

Problems112

7 Curvature115

Local Invariants115

Flat Manifolds119

Symmetries of the Curvature Tensor121

Ricci and Scalar Curvatures124

Problems128

8 Riemannian Submanifolds131

Riemannian Submanifolds and the Second Fundamental Form132

Hypersurfaces in Euclidean Space139

Geometric Interpretation of Curvature in Higher Dimensions145

Problems150

9 The Gauss-Bonnet Theorem155

Some Plane Geometry156

The Gauss-Bonnet Formula162

The Gauss-Bonnet Theorem166

Problems171

10 Jacobi Fields173

The Jacobi Equation174

Computations of Jacobi Fields178

Conjugate Points181

The Second Variation Formula185

Geodesics Do Not Minimize Past Conjugate Points187

Problems191

11 Curvature and Topology193

Some Comparison Theorems194

Manifolds of Negative Curvature196

Manifolds of Positive Curvature199

Manifolds of Constant Curvature204

Problems208

References209

Index213

热门推荐