图书介绍

预测与时间序列 第3版PDF|Epub|txt|kindle电子书版本网盘下载

预测与时间序列 第3版
  • (美)鲍尔曼(Bowerman,B.L.),(美)奥康奈尔(Oconnell,R.T.)著 著
  • 出版社: 北京:机械工业出版社
  • ISBN:7111124103
  • 出版时间:2003
  • 标注页数:726页
  • 文件大小:23MB
  • 文件页数:740页
  • 主题词:数学预测-高等学校-教材-英文;时间序列分析-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

预测与时间序列 第3版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

PART ⅠINTRODUCTION1

CHAPTER 1AN INTRODUCTION TO FORECASTING2

1.1 Introduction2

1.2 Forecasting and Time Series3

1.3 Forecasting Methods8

1.4 Errors in Forecasting12

1.5 Choosing a Forecasting Technique17

1.6 An Overview of Quantitative Forecasting Techniques19

1.7 Computer Packages:Minitab and SAS23

Exercises23

CHAPTER 2 BASIC STATISTICAL CONCEPTS26

2.1 Populations27

2.2 Probability29

2.3 Random Samples and Sample Statistics31

2.4 Continuous Probability Distributions34

2.5 The Normal Probability Distribution36

2.6 The t-Distribution,the F-Distribution,and the Chi-Square Distribution45

2.7 Confidence Intervals for a Population Mean48

2.8 Hypothesis Testing for a Population Mean58

Exercises72

PART Ⅱ FORECASTING BY USING REGRESSION ANALYSIS76

CHAPTER 3 SIMPLE LINEAR REGRESSION77

3.1 The Simple Linear Regression Model78

3.2 The Least Squares Point Estimates86

3.3 Point Estimates and Point Predictions90

3.4 Model Assumptions,the Mean Square Error,and the Standard Error93

3.5 Testing the Significance of the Independent Variable97

3.6 A Confidence Interval for a Mean Value of the Dependent Variable and a Prediction Interval for an Individual Value of the Dependent Variable104

3.7 Simple Coefficients of Determination and Correlation112

3.8 An F-Test for the Simple Linear Regression Model118

3.9 Using the Computer121

Exercises122

CHAPTER 4 MULTIPLE REGRESSION131

4.1 The Linear Regression Model132

4.2 The Least Squares Point Estimates144

4.3 Point Estimates and Point Predictions149

4.4 The Regression Assumptions and the Standard Error153

4.5 Multiple Coefficients of Determination and Correlation156

4.6 An F-Test for the Overall Model159

4.7 Statistical Inference for βj and Multicollinearity161

4.8 Confidence Intervals and Prediction Intervals166

4.9 An Introduction to Model Building172

4.10 Residual Analysis179

4.11 Using the Computer198

Exercises200

CHAPTER 5 TOPICS IN REGRESSION ANALYSIS214

5.1 Interaction215

5.2 An F-Test for a Portion of a Model226

5.3 Using Dummy Variables to Model Qualitative Independent Variables230

5.4 Advanced Concepts of Multicollinearity240

5.5 Advanced Model Comparison Methods248

5.6 Stepwise Regression,Forward Selection,Backward Elimination,and Maximum R2 Improvement255

5.7 Outlying and Influential Observations260

5.8 Handling Unequal Variances266

5.9 Using the Computer270

Exercises273

PART Ⅲ FORECASTING BY USING TIME SERIES REGRESSION,DECOMPOSITION METHODS,AND EXPONENTIAL SMOOTHING289

CHAPTER 6 TIME SERIES REGRESSION290

6.1 Modeling Trend by Using Polynomial Functions291

6.2 Detecting Autocorrelation301

6.3 Types of Seasonal Variation308

6.4 Modeling Seasonal Variation by Using Dummy Variables and Trigonometric Functions316

6.5 Growth Curve Models325

6.6 Handling First-Order Autocorrelation330

6.7 Using the Computer337

Exercises342

CHAPTER 7 DECOMPOSITION METHODS354

7.1 Multiplicative Decomposition355

7.2 Additive Decomposition368

7.3 Shifting Seasonal Patterns370

7.4 The Census II Decomposition Method and SAS PROC X11373

7.5 Using the Computer374

Exercises375

CHAPTER 8 Exponential Smoothing379

8.1 Simple Exponential Smoothing380

8.2 Adaptive Control Procedures386

8.3 Double Exponential Smoothing389

8.4 Winters'Method403

8.5 Exponential and Damped Trends421

8.6 Prediction Intervals427

8.7 Concluding Comments430

8.8 Using the Computer431

Exercises431

PART Ⅳ FORECASTING BY USING BASIC TECHNIQUES OF THE BOX-JENKINS METHODOLOGY435

CHAPTER 9 NONSEASONAL BOX-JENKINS MODELS AND THEIR TENTATIVE IDENTIFICATION436

9.1 Stationary and Nonstationary Time Series437

9.2 The Sample Autocorrelation and Partial Autocorrelation Functions:The SAC and SPAC441

9.3 An Introduction to Nonseasonal Modeling and Forecasting457

9.4 Tentative Identification of Nonseasonal Box-Jenkins Models467

9.5 Using the Computer477

Exercises478

CHAPTER 10 ESTIMATION,DIAGNOSTIC CHECKING,AND FORECASTING FOR NONSEASONAL BOX-JENKINS MODELS487

10.1 Estimation488

10.2 Diagnostic Checking496

10.3 Forecasting502

10.4 A Case Study504

10.5 Using the Computer512

Exercises514

CHAPTER 11 AN INTRODUCTION TO BOX-JENKINS SEASONAL MODELING521

11.1 Transforming a Seasonal Time Series into a Stationary Time Series521

11.2 Two Examples of Seasonal Modeling and Forecasting533

11.3 Using the Computer550

Exercises552

PART Ⅴ FORECASTING BY USING ADVANCED TECHNIQUES OF THE BOX-JENKINS METHODOLOGY566

CHAPTER 12 GENERAL BOX-JENKINS SEASONAL MODELING567

12.1 The General Seasonal Model and Guidelines for Tentative Identification568

12.2 Improving an Inadequate Seasonal Model581

12.3 Using the Computer595

Exercises596

CHAPTER 13 USING THE BOX-JENKINS METHODOLOGY TO IMPROVE TIME SERIES REGRESSION MODELS AND TO IMPLEMENT EXPONENTIAL SMOOTHING606

13.1 Box-Jenkins Error Term Models in Time Series Regression607

13.2 Seasonal Intervention Models618

13.3 Box-Jenkins Implementation of Exponential Smoothing625

13.4 Using the Computer639

Exercises643

CHAPTER 14 TRANSFER FUNCTIONS AND INTERVENTION MODELS657

14.1 A Three-Step Procedure for Building a Transfer Function Model658

14.2 Intervention Models677

14.3 Using the Computer689

Exercises694

APPENDIX A STATISTICAL TABLES706

APPENDIX B REFERENCES716

Index719

热门推荐