图书介绍
ELEMENTARY TOPOLOGY AND APPLICATIONSPDF|Epub|txt|kindle电子书版本网盘下载
![ELEMENTARY TOPOLOGY AND APPLICATIONS](https://www.shukui.net/cover/59/34163776.jpg)
- 著
- 出版社: WORLD SCIENTIFIC
- ISBN:9810242409
- 出版时间:2000
- 标注页数:201页
- 文件大小:20MB
- 文件页数:210页
- 主题词:
PDF下载
下载说明
ELEMENTARY TOPOLOGY AND APPLICATIONSPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER 0. SETS AND NUMBERS1
0.1 Rudiments of Logic1
0.2 Fundamentals of Set Description5
0.3 Set Inclusion and Equality5
0.4 An Axiom System for Set Theory6
0.5 Unions and Intersections6
0.6 Set Difference7
0.7 Integers and Induction7
0.8 Simple Cartesian Products11
0.9 Relations11
0.10 Functions12
0.11 Sequences14
0.12 Indexing Sets15
0.13 Important Formulas16
0.14 Inverse Functions16
0.15 More Important Formulas17
0.16 Partitions18
0.17 Equivalence Relations, Partitions and Functions18
0.18 General Cartesian Products19
0.19 The Sixth Axiom (Axiom of Choice)20
0.20 Well-Orders and Zorn21
0.21 Yet More Important Formulas22
0.22 Cardinality22
CHAPTER 1. METRIC AND TOPOLOGICAL SPACES31
1.1 Metrics and Topologies31
1.2 Time out for Notation33
1.3 Metrics Generate Topologies35
1.4 Continuous Functions36
1.5 Subspaces39
1.6 Comparable Topologies39
CHAPTER 2. FROM OLD TO NEW SPACES47
2.1 Product Spaces47
2.2 Product Metrics and Topologies51
2.3 Quotient Spaces53
2.4 Applications (Mobius Band, Klein Bottle, Torus, Projective Plane, etc.)55
CHAPTER 3. VERY SPECIAL SPACES67
3.1 Compact Spaces67
3.2 Compactif'ication (One-Point Only)73
3.3 Complete Metric Spaces (Baire-Category, Banach Contraction Theorem and Applications of Roots of y = h(x) to Systems of Linear Equations75
3.4 Connected and Arcwise Connected Spaces80
CHAPTER 4. FUNCTION SPACES89
4.1 Function Space Topologies89
4.2 Completness and Compactness (Ascoli-Arzela Theorem, Picard's Theorem, Peano's Theorem)92
4.3 Approximation (Bernstein's polynomials, Stone-Weierstrass Approximation)100
4.4 Function-Space Functions103
CHAPTER 5. TOPOLOGICAL GROUPS114
5.1 Elementary Structures114
5.2 Topological Isomorphism Theorems121
5.3 Quotient Group Recognition123
5.4 Morphism Groups (Topological and Transformation Groups)124
CHAPTER 6. SPECIAL GROUPS131
6.1 Preliminaries131
6.2 Groups of Matrices134
6.3 Groups of Isometries135
6.4 Relativity and Lorentz Transformations140
CHAPTER 7. NORMALITY AND PARACOMPACTNESS147
7.1 Normal Spaces (Urysohn's Lemma)147
7.2 Paracompact Spaces (Partitions of Unity with and Application to Embedding of Manifolds in Euclidean Spaces)151
CHAPTER 8. THE FUNDAMENTAL GROUP167
8.1 Description of II,(X,b)167
8.2 Elementary Facts about II,(X,b)173
8.3 Simplicial Complexes175
8.4 Barycentric Subdivision179
8.5 The Simplicial Approximation181
8.6 The Fundamental Group of Polytopes183
8.7 Graphs and Trees187
APPENDIX A. SOME INEQUALITIES193
APPENDIX B. BINOMIAL EQUALITIES195
LIST OF SYMBOLS197
INDEX199