图书介绍

The structure of materialsPDF|Epub|txt|kindle电子书版本网盘下载

The structure of materials
  • Samuel M. Allen ; Edwin L. Thomas 著
  • 出版社: J. Wiley
  • ISBN:0471000825
  • 出版时间:1999
  • 标注页数:448页
  • 文件大小:54MB
  • 文件页数:467页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

The structure of materialsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 The Structure of Materials:Overview1

1.1 Descriptors and Averaging3

1.2 Preliminary Concepts5

1.2.1 Symmetry5

1.2.2 Bonding11

Types of Bonds12

Structural Descriptors of Bonded Materials15

Molecular Geometry17

Polyatomic Covalently Bonded Molecules:Electron-Domain Theory18

Shape Diversity in Large Molecules and Macromolecules20

1.2.3 Coordination Number22

1.2.4 Packing Fraction22

1.2.5 Order and Disorder23

1.3 Structure of Materials Roadmap25

References28

Additional Reading28

Exercises28

Chapter 2 Noncrystalline State31

2.1 Generic Descriptors35

2.1.1 Short-Range Order35

2.1.2 The Glass Transition and Free Volume37

2.1.3 Pair-Distribution Function39

2.1.4 Symmetry of Glass Structure and Physical Properties43

2.2 Hard-Sphere Models43

2.2.1 Bernal’s Random Close-Packed Sphere Model44

2.2.1 Voronoi Polyhedra48

2.3 Random-Walk Models51

2.3.1 Brownian Motion and Diffusion51

2.3.2 Polymeric Glasses and Melts56

Thermoplastics57

Polymer Conformations60

Polymer Composition,Architecture and Tacticity61

2.4 Network Models63

2.4.1 Oxide Glasses65

2.4.2 Thermosetting Polymers69

2.4.3 Chalcogenide Glasses72

Xerography:An Application of Noncrystalline Semiconductors73

2.5 Fractal Models74

2.5.1 Dilation Symmetry and Fractal Dimension74

2.5.2 Ordered Fractals76

2.5.3 Irregular Fractals77

2.5.4 Diffusion-Limited Aggregation77

2.5.5 Fractals and Fracture80

References80

Additional Reading81

Exercises81

Chapter 3 Crystalline State89

3.1 The Crystallography of Two Dimensions91

3.1.1 Translational Symmetry91

Lattices91

Primitive Cells,Multiple Cells,and Unit Cells93

Notation for Rational Points and Rational Lines95

3.1.2 Reflectional and Glide Symmetry97

3.1.3 Rotational Symmetry99

Proper Rotation Axes99

Limitation of Rotational Symmetries in Crystals due to Translational Periodicity101

3.1.4 Plane Point Groups103

Derivation of Plane Point Groups by Combining Reflections and Rotations103

General and Special Positions106

International and Schoenflies Symbols107

3.1.5 The Five Distinct Plane Lattices108

Plane Lattice Nets Arising from Crystallographic Rotation Axes and Translations109

Lattice Nets Arising from Mirror Lines and Translations112

3.1.6 Plane Groups114

Addition of Reflectional Symmetry to Plane Lattices116

The Seventeen Distinct Crystallographic Plane Groups117

3.1.7 The International Tables for Crystallography:Plane Groups119

Symbols and Notation120

Description of Two-Dimensional Patterns by Crystallographic Data122

Generation of Two-Dimensional Patterns from Crystallographic Data124

Summary of Information Concerning Plane Groups126

3.2 The Crystallography of Three Dimensions126

3.2.1 Symmetry Operations Unique to Three Dimensions126

Inversion126

Rotoinversion127

Rotoreflection129

Screw Axes130

3.2.2 Techniques for Three-Dimensional Spatial Relationships135

Rational Intercept Plane:Miller Indices135

Direction Common to Two Planes,Zone Axes,Weiss Zone Law138

Spherical Trigonometry140

Stereographic Projection143

3.2.3 Axial Combinations of Rotational Symmetries146

Simultaneous Rotational Symmetries146

Permissible Combinations of Rotational Axes in Three-Dimensional Crystals147

3.2.4 The Thirty-Two Crystallographic Point Groups151

Decomposition of Improper Rotation Axes152

Derivation of Point Groups by Adding Extenders to Permissible Axial Combinations153

Schoenflies Notation for the Crystallographic Point Groups158

Laue Groups159

3.2.5 Space Lattices159

Principles of Derivation by Stacking of Plane Lattices162

The Fourteen Bravais Lattices and Six Crystal Systems166

Conventional Unit Cells for the Crystal Lattices168

3.2.6 Space Groups170

Glide Planes170

Derivation Method for Space Groups172

3.2.7 The International Tables for Crystallography:Space Groups173

3.3 Symmetry Constraints on Material Properties179

3.3.1 Transformation of a Vector181

3.3.2 Transformation of a Tensor181

3.3.3 Tensor Properties of Crystals182

3.3.4 Symmetry Constraints185

3.4 Hard-Sphere Packing and Crystal Structure189

3.4.1 Close-Packed Structures191

3.4.2 Interstitial Sites in Close-Packed Structures194

3.4.3 Close Packing in Ionic Compounds195

3.5 Quasicrystals196

3.5.1 Aperiodic Tiling Patterns197

3.5.2 Icosahedral Structures in Crystals201

References201

Additional Reading202

Exercises202

Chapter 4 Liquid-Crystalline State213

4.1 Structural Classes of Liquid Crystals218

4.1.1 Nematic Phase220

4.1.2 Twisted Nematic Phase221

4.1.3 Smectic Phase223

4.1.4 Columnar Phase226

4.2 Descriptors for Liquid Crystals227

4.2.1 Pair-Distribution Function227

4.2.2 Orientational Order Parameter228

4.2.3 Translational Order Parameter231

4.3 Mesophase Texture and Identification of Liquid-Crystalline Phases233

4.4 Applications of Liquid Crystals233

4.4.1 Surfactants233

4.4.2 Liquid-Crystalline Fibers235

4.4.3 Liquid-Crystal Displays237

4.4.4 Next-Generation Flexible Liquid-Crystal Displays239

4.5 Plastic Crystals242

References242

Additional Reading243

Exercises243

Chapter 5 Imperfections in Ordered Media249

5.1 Point Imperfections251

5.1.1 Vacancies251

5.1.2 Interstitials255

5.1.3 Point Imperfections in Molecular Crystals257

5.1.4 Mobility of Point Imperfections260

5.1.5 Solid Solutions260

5.1.6 Point Imperfections in Ionic Crystals263

Kroger-Vink Notation264

Schottky and Frenkel Imperfections265

Imperfections Associated with Impurities267

5.2 Line Imperfections271

5.2.1 Dislocations273

Evidence for Dislocations276

Characterization of Dislocations:Tangent Vector and Burgers Vector280

Dislocation Motion by Slip and Climb283

Dislocation Loops287

Slip Systems290

Resolved Shear Stress on a Dislocation294

Elastic Energy of Dislocations298

Strengthening Mechanisms in Crystals298

Generation of Dislocations304

Dislocations in Columnar Crystals307

5.2.2 Disclinations307

5.3 Surface Imperfections313

5.3.1 Surface Tension and Surface Free Energy313

5.3.2 Geometry of Grain Structures316

5.3.3 Equilibrium at Interfacial Junctions318

5.3.4 Structure of Crystalline Interfaces321

Stacking Faults322

Antiphase Boundaries324

Grain Boundaries327

Interphase Grain Boundaries332

Grain Boundaries in Block Copolymers334

Magnetic Domain Walls335

Walls in Liquid Crystals339

5.4 Imperfections and Symmetry Breaking340

References340

Additional Reading341

Exercises341

Chapter 6 Microstructure349

6.1 Structural Hierarchies350

6.1.1 Structural Hierarchy in a Metal Forging352

6.1.2 Structural Hierarchy in a Semicrystalline Polymer354

6.2 Microstructures Arising from Special Processing357

6.2.1 Deformation Microstructures358

Deformation Processing and Crystallographic Texture358

Microstructures of Deformed Polycrystalline Materials359

Characterization of Textures:X-Ray Pole Figures361

6.2.2 Transformation Microstructures364

Solidification Microstructures364

Solid-Solid Transformation Microstructures370

Composite Microstructures374

6.3 Microstructural Case Studies379

6.3.1 Nickel-Base Superalloys380

6.3.2 Thermoset/Carbon-Fiber Composite Laminates385

6.4 Where Do We Go From Here?389

References391

Additional Reading391

Exercises393

Index397

热门推荐