图书介绍
MICROELECTRONIC CIRCUIT DESIGNPDF|Epub|txt|kindle电子书版本网盘下载
- RICHARD C.JAEGER AND TRAVIS N.BLALOCK 著
- 出版社: MCGRAW HILL
- ISBN:0073380458
- 出版时间:2011
- 标注页数:1334页
- 文件大小:369MB
- 文件页数:1360页
- 主题词:
PDF下载
下载说明
MICROELECTRONIC CIRCUIT DESIGNPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
PART ONE SOLID STATE ELECTRONIC AND DEVICES1
CHAPTER 1 INTRODUCTION TO ELECTRONICS3
1.1 A Brief History of Electronics:From Vacuum Tubes to Giga-Scale Integration5
1.2 Classifiication of Electronic Signals8
1.2.1 Digital Signals9
1.2.2 Analog Signals9
1.2.3 A/D and D/A Converters—Bridging the Analog and Digital Domains10
1.3 Notational Conventions12
1.4 Problem-Solving Approach13
1.5 Important Concepts from Circuit Theory15
1.5.1 Voltage and Current Division15
1.5.2 Thevenin and Norton Circuit Representations16
1.6 Frequency Spectrum of Electronic Signals21
1.7 Amplifiers22
1.7.1 Ideal Operational Amplifiers23
1.7.2 Amplifier Frequency Response25
1.8 Element Variations in Circuit Design26
1.8.1 Mathematical Modeling of Tolerances26
1.8.2 Worst-Case Analysis27
1.8.3 Monte Carlo Analysis29
1.8.4 Temperature Coeffiicients32
1.9 Numeric Precision34
Summary34
Key Terms35
References36
Additional Reading36
Problems37
CHAPTER 2 SOLID-STATE ELECTRONICS42
2.1 Solid-State Electronic Materials44
2.2 Covalent Bond Model45
2.3 Drift Currents and Mobility in Semiconductors48
2.3.1 Drift Currents48
2.3.2 Mobility49
2.3.3 Velocity Saturation49
2.4 Resistivity of Intrinsic Silicon50
2.5 Impurities in Semiconductors51
2.5.1 Donor Impurities in Silicon52
2.5.2 Acceptor Impurities in Silicon52
2.6 Electron and Hole Concentrations in Doped Semiconductors52
2.6.1 n-Type Material (ND > NA)53
2.6.2 p-Type Material (NA >ND)54
2.7 Mobility and Resistivity in Doped Semiconductors55
2.8 Diffusion Currents59
2.9 Total Current60
2.10 Energy Band Model61
2.10.1 Electron-Hole Pair Generation in an Intrinsic Semiconductor61
2.10.2 Energy Band Model for a Doped Semiconductor62
2.10.3 Compensated Semiconductors62
2.11 Overview of Integrated Circuit Fabrication64
Summary67
Key Terms68
Reference69
Additional Reading69
Important Equations69
Problems70
CHAPTER 3 SOLID-STATE DIODES AND DIODE CIRCUITS74
3.1 The pn Junction Diode75
3.1.1 pn Junction Electrostatics75
3.1.2 Internal Diode Currents79
3.2 The i-v Characteristics of the Diode80
3.3 The Diode Equation:A Mathematical Model for the Diode82
3.4 Diode Characteristics Under Reverse,Zero,and Forward Bias85
3.4.1 Reverse Bias85
3.4.2 Zero Bias85
3.4.3 Forward Bias86
3.5 Diode Temperature Coefficient89
3.6 Diodes Under Reverse Bias89
3.6.1 Saturation Current in Real Diodes90
3.6.2 Reverse Breakdown91
3.6.3 Diode Model for the Breakdown Region92
3.7 pn Junction Capacitance92
3.7.1 Reverse Bias92
3.7.2 Forward Bias93
3.8 Schottky Barrier Diode93
3.9 Diode SPICE Model and Layout94
3.10 Diode Circuit Analysis96
3.10.1 Load-Line Analysis96
3.10.2 Analysis Using the Mathematical Model for the Diode98
3.10.3 The Ideal Diode Model102
3.10.4 Constant Voltage Drop Model104
3.10.5 Model Comparison and Discussion105
3.11 Multiple-Diode Circuits106
3.12 Analysis of Diodes Operating in the Breakdown Region109
3.12.1 Load-Line Analysis109
3.12.2 Analysis with the Piecewise Linear Model109
3.12.3 Voltage Regulation110
3.12.4 Analysis Including Zener Resistance111
3.12.5 Line and Load Regulation112
3.13 Half-Wave Rectifiier Circuits113
3.13.1 Half-Wave Rectifiier with Resistor Load113
3.13.2 Rectifier Filter Capacitor114
3.13.3 Half-Wave Rectifiier with RC Load115
3.13.4 Ripple Voltage and Conduction Interval116
3.13.5 Diode Current118
3.13.6 Surge Current120
3.13.7 Peak-Inverse-Voltage (PIV) Rating120
3.13.8 Diode Power Dissipation120
3.13.9 Half-Wave Rectifier with Negative Output Voltage121
3.14 Full-Wave Rectifiier Circuits123
3.14.1 Full-Wave Rectifier with Negative Output Voltage124
3.15 Full-Wave Bridge Rectification125
3.16 Rectifiier Comparison and Design Tradeoffs125
3.17 Dynamic Switching Behavior of the Diode129
3.18 Photo Diodes,Solar Cells,and Light-Emitting Diodes130
3.18.1 Photo Diodes and Photodetectors130
3.18.2 Power Generation from Solar Cells131
3.18.3 Light-Emitting Diodes (LEDs)132
Summary133
Key Terms134
Reference135
Additional Reading135
Problems135
CHAPTER 4 FIELD-EFFECT TRANSISTORS145
4.1 Characteristics of the MOS Capacitor146
4.1.1 Accumulation Region147
4.1.2 Depletion Region148
4.1.3 Inversion Region148
4.2 The NMOS Transistor148
4.2.1 Qualitative i-v Behavior of the NMOS Transistor149
4.2.2 Triode Region Characteristics of the NMOS Transistor150
4.2.3 On Resistance153
4.2.4 Saturation of the i-v Characteristics154
4.2.5 Mathematical Model in the Saturation (Pinch-Off) Region155
4.2.6 Transconductance157
4.2.7 Channel-Length Modulation157
4.2.8 Transfer Characteristics and Depletion-Mode MOSFETS158
4.2.9 Body Effect or Substrate Sensitivity159
4.3 PMOS Transistors161
4.4 MOSFET Circuit Symbols163
4.5 Capacitances in MOS Transistors165
4.5.1 NMOS Transistor Capacitances in the Triode Region165
4.5.2 Capacitances in the Saturation Region166
4.5.3 Capacitances in Cutoff166
4.6 MOSFET Modeling in SPICE167
4.7 MOS Transistor Scaling169
4.7.1 Drain Current169
4.7.2 Gate Capacitance169
4.7.3 Circuit and Power Densities170
4.7.4 Power-Delay Product170
4.7.5 Cutoff Frequency171
4.7.6 High Field Limitations171
4.7.7 Subthreshold Conduction172
4.8 MOS Transistor Fabrication and Layout Design Rules172
4.8.1 Minimum Feature Size and Alignment Tolerance173
4.8.2 MOS Transistor Layout173
4.9 Biasing the NMOS Field-Effect Transistor176
4.9.1 Why Do We Need Bias?176
4.9.2 Constant Gate-Source Voltage Bias178
4.9.3 Load Line Analysis for the Q-Point181
4.9.4 Four-Resistor Biasing182
4.10 Biasing the PMOS Field-Effect Transistor188
4.11 The Junction Field-Effect Transistor (IFET)190
4.11.1 The JFET with Bias Applied191
4.11.2 JFET Channel with Drain-Source Bias191
4.11.3 n-Channel JFET i-v Characteristics193
4.11.4 The p-Channel JFET195
4.11.5 Circuit Symbols and JFET Model Summary195
4.11.6 JFET Capacitances196
4.12 JFET Modeling in SPICE197
4.13 Biasing the JFET and Depletion-Mode MOSFET198
Summary200
Key Terms202
References203
Problems204
CHAPTER 5 BIPOLAR JUNCTION TRANSISTORS217
5.1 Physical Structure of the Bipolar Transistor218
5.2 The Transport Model for the npn Transistor219
5.2.1 Forward Characteristics220
5.2.2 Reverse Characteristics222
5.2.3 The Complete Transport Model Equations for Arbitrary Bias Conditions223
5.3 The pnp Transistor225
5.4 Equivalent Circuit Representations for the Transport Models227
5.5 The i-v Characteristics of the Bipolar Transistor228
5.5.1 Output Characteristics228
5.5.2 Transfer Characteristics229
5.6 The Operating Regions of the Bipolar Transistor230
5.7 Transport Model Simplifiications231
5.7.1 Simplified Model for the Cutoff Region231
5.7.2 Model Simplifications for the Forward-Active Region233
5.7.3 Diodes in Bipolar Integrated Circuits239
5.7.4 Simplifiied Model for the Reverse-Active Region240
5.7.5 Modeling Operation in the Saturation Region242
5.8 Nonideal Behavior of the Bipolar Transistor245
5.8.1 Junction Breakdown Voltages246
5.8.2 Minority-Carrier Transport in the Base Region246
5.8.3 Base Transit Time247
5.8.4 Diffusion Capacitance249
5.8.5 Frequency Dependence of the Common-Emitter Current Gain250
5.8.6 The Early Effect and Early Voltage250
5.8.7 Modeling the Early Effect251
5.8.8 Origin of the Early Effect251
5.9 Transconductance252
5.10 Bipolar Technology and SPICE Model253
5.10.1 Qualitative Description253
5.10.2 SPICE Model Equations254
5.10.3 High-Performance Bipolar Transistors255
5.11 Practical Bias Circuits for the BJT256
5.11.1 Four-Resistor Bias Network258
5.11.2 Design Objectives for the Four-Resistor Bias Network260
5.11.3 Iterative Analysis of the Four-Resistor Bias Circuit266
5.12 Tolerances in Bias Circuits266
5.12.1 Worst-Case Analysis267
5.12.2 Monte Carlo Analysis269
Summary272
Key Terms274
References274
Problems275
PART TWO DIGITAL ELECTRONICS285
CHAPTER 6 INTRODUCTION TO DIGITAL ELECTRONICS287
6.1 Ideal Logic Gates289
6.2 Logic Level Definitions and Noise Margins289
6.2.1 Logic Voltage Levels291
6.2.2 Noise Margins291
6.2.3 Logic Gate Design Goals292
6.3 Dynamic Response of Logic Gates293
6.3.1 Rise Time and Fall Time293
6.3.2 Propagation Delay294
6.3.3 Power-Delay Product294
6.4 Review of Boolean Algebra295
6.5 NMOS Logic Design297
6.5.1 NMOS Inverter with Resistive Load298
6.5.2 Design of the W/L Ratio of Ms299
6.5.3 Load Resistor Design300
6.5.4 Load-Line Visualization300
6.5.5 On-Resistance of the Switching Device302
6.5.6 Noise Margin Analysis303
6.5.7 Calculation of V IL and VOH303
6.5.8 Calculation of V I H and VOL304
6.5.9 Load Resistor Problems305
6.6 Transistor Alternatives to the Load Resistor306
6.6.1 The NMOS Saturated Load Inverter307
6.6.2 NMOS Inverter with a Linear Load Device315
6.6.3 NMOS Inverter with a Depletion-Mode Load316
6.6.4 Static Design of the Pseudo NMOS Inverter319
6.7 NMOS Inverter Summary and Comparison323
6.8 NMOS NAND and NOR Gates324
6.8.1 NOR Gates325
6.8.2 NAND Gates326
6.8.3 NOR and NAND Gate Layouts in NMOS Depletion-Mode Technology327
6.9 Complex NMOS Logic Design328
6.10 Power Dissipation333
6.10.1 Static Power Dissipation333
6.10.2 Dynamic Power Dissipation334
6.10.3 Power Scaling in MOS Logic Gates335
6.11 Dynamic Behavior of MOS Logic Gates337
6.11.1 Capacitances in Logic Circuits337
6.11.2 Dynamic Response of the NMOS Inverter with a Resistive Load338
6.11.3 Pseudo NMOS Inverter343
6.11.4 A Final Comparison of NMOS Inverter Delays344
6.11.5 Scaling Based Upon Reference Circuit Simulation346
6.11.6 Ring Oscillator Measurement of Intrinsic Gate Delay346
6.11.7 Unloaded Inverter Delay347
6.12 PMOS Logic349
6.12.1 PMOS Inverters349
6.12.2 NOR and NAND Gates352
Summary352
Key Terms354
References355
Additional Reading355
Problems355
CHAPTER 7 COMPLEMENTARY MOS (CMOS) LOGIC DESIGN367
7.1 CMOS Inverter Technology368
7.1.1 CMOS Inverter Layout370
7.2 Static Characteristics of the CMOS Inverter370
7.2.1 CMOS Voltage Transfer Characteristics371
7.2.2 Noise Margins for the CMOS Inverter373
7.3 Dynamic Behavior of the CMOS Inverter375
7.3.1 Propagation Delay Estimate375
7.3.2 Rise and Fall Times377
7.3.3 Performance Scaling377
7.3.4 Delay of Cascaded Inverters379
7.4 Power Dissipation and Power Delay Product in CMOS380
7.4.1 Static Power Dissipation380
7.4.2 Dynamic Power Dissipation381
7.4.3 Power-Delay Product382
7.5 CMOS NOR and NAND Gates384
7.5.1 CMOS NOR Gate384
7.5.2 CMOS NAND Gates387
7.6 Design of Complex Gates in CMOS388
7.7 Minimum Size Gate Design and Performance393
7.8 Dynamic Domino CMOS Logic395
7.9 Cascade Buffers397
7.9.1 Cascade Buffer Delay Model397
7.9.2 Optimum Number of Stages398
7.10 The CMOS Transmission Gate400
7.11 CMOS Latchup401
Summary404
Key Terms405
References406
Problems406
CHAPTER 8 MOS MEMORY AND STORAGE CIRCUITS416
8.1 Random Access Memory417
8.1.1 Random Access Memory (RAM) Architecture417
8.1.2 A 256-Mb Memory Chip418
8.2 Static Memory Cells419
8.2.1 Memory Cell Isolation and Access—The 6-T Cell422
8.2.2 The Read Operation422
8.2.3 Writing Data into the 6-T Cell426
8.3 Dynamic Memory Cells428
8.3.1 The One-Transistor Cell430
8.3.2 Data Storage in the 1-T Cell430
8.3.3 Reading Data from the 1-T Cell431
8.3.4 The Four-Transistor Cell433
8.4 Sense Amplifiers434
8.4.1 A Sense Amplifier for the 6-T Cell434
8.4.2 A Sense Amplifier for the 1-T Cell436
8.4.3 The Boosted Wordline Circuit438
8.4.4 Clocked CMOS Sense Amplifiiers438
8.5 Address Decoders440
8.5.1 NOR Decoder440
8.5.2 NAND Decoder440
8.5.3 Decoders in Domino CMOS Logic443
8.5.4 Pass-Transistor Column Decoder443
8.6 Read-Only Memory (ROM)444
8.7 Flip-Flops447
8.7.1 RS Flip-Flop449
8.7.2 The D-Latch Using Transmission Gates450
8.7.3 A Master-Slave D Flip-Flop450
Summary451
Key Terms452
References452
Problems453
CHAPTER 9 BIPOLAR LOGIC CIRCUITS460
9.1 The Current Switch (Emitter-Coupled Pair)461
9.1.1 Mathematical Model for Static Behavior of the Current Switch462
9.1.2 Current Switch Analysis for V I > VREF463
9.1.3 Current Switch Analysis for V I < VREF464
9.2 The Emitter-Coupled Logic (ECL) Gate464
9.2.1 ECL Gate with vI = VH465
9.2.2 ECL Gate with vI = VL466
9.2.3 Input Current of the ECL Gate466
9.2.4 ECL Summary466
9.3 Noise Margin Analysis for the ECL Gate467
9.3.1 VI L,VOH,VI H,and VOL467
9.3.2 Noise Margins468
9.4 Current Source Implementation469
9.5 The ECL OR-NOR Gate471
9.6 The Emitter Follower473
9.6.1 Emitter Follower with a Load Resistor474
9.7 “Emitter Dotting” or “Wired-OR” Logic476
9.7.1 Parallel Connection of Emitter-Follower Outputs477
9.7.2 The Wired-OR Logic Function477
9.8 ECL Power-Delay Characteristics477
9.8.1 Power Dissipation477
9.8.2 Gate Delay479
9.8.3 Power-Delay Product480
9.9 Current Mode Logic481
9.9.1 CML Logic Gates481
9.9.2 CML Logic Levels482
9.9.3 VEE Supply Voltage482
9.9.4 Higher-Level CML483
9.9.5 CML Power Reduction484
9.9.6 NMOS CML485
9.10 The Saturating Bipolar Inverter487
9.10.1 Static Inverter Characteristics488
9.10.2 Saturation Voltage of the Bipolar Transistor488
9.10.3 Load-Line Visualization491
9.10.4 Switching Characteristics of the Saturated BJT491
9.11 A Transistor-Transistor Logic (TTL) Prototype494
9.11.1 TTL Inverter for vI = VL494
9.11.2 TTL Inverter for vI = VH495
9.11.3 Power in the Prototype TTL Gate496
9.11.4 VIH,VIL,and Noise Margins for the TTL Prototype496
9.11.5 Prototype Inverter Summary498
9.11.6 Fanout Limitations of the TTL Prototype498
9.12 The Standard 7400 Series TTL Inverter500
9.12.1 Analysis for V I = VL500
9.12.2 Analysis for V I = VH501
9.12.3 Power Consumption503
9.12.4 TTL Propagation Delay and Power-Delay Product503
9.12.5 TTL Voltage Transfer Characteristic and Noise Margins503
9.12.6 Fanout Limitations of Standard TTL504
9.13 Logic Functions in TTL504
9.13.1 Multi-Emitter Input Transistors505
9.13.2 TTL NAND Gates505
9.13.3 Input Clamping Diodes506
9.14 Schottky-Clamped TTL506
9.15 Comparison of the Power-Delay Products of ECL and TTL508
9.16 BiCMOS Logic508
9.16.1 BiCMOS Buffers509
9.16.2 BiNMOS Inverters511
9.16.3 BiCMOS Logic Gates513
Summary513
Key Terms515
References515
Additional Reading515
Problems516
PART THREE ANALOG ELECTRONICS527
CHAPTER10 ANALOG SYSTEMS AND IDEAL OPERATIONAL AMPLIFIERS529
10.1 An Example of an Analog Electronic System530
10.2 Amplifiication531
10.2.1 Voltage Gain532
10.2.2 Current Gain533
10.2.3 Power Gain533
10.2.4 The Decibel Scale534
10.3 Two-Port Models for Amplifiiers537
10.3.1 The g-parameters537
10.4 Mismatched Source and Load Resistances541
10.5 Introduction to Operational Amplifiers544
10.5.1 The Differential Amplifier544
10.5.2 Differential Amplifier Voltage Transfer Characteristic545
10.5.3 Voltage Gain545
10.6 Distortion in Amplifiers548
10.7 Differential Amplifier Model549
10.8 Ideal Differential and Operational Amplifiers551
10.8.1 Assumptions for Ideal Operational Amplifier Analysis551
10.9 Analysis of Circuits Containing Ideal Operational Amplifiiers552
10.9.1 The Inverting Amplifiier553
10.9.2 The Transresistance Amplifiier—A Current-to-Voltage Converter556
10.9.3 The Noninverting Amplifier558
10.9.4 The Unity-Gain Buffer,or Voltage Follower561
10.9.5 The Summing Amplifiier563
10.9.6 The Difference Amplifier565
10.10 Frequency-Dependent Feedback568
10.10.1 Bode Plots568
10.10.2 The Low-Pass Amplifier568
10.10.3 The High-Pass Amplifier572
10.10.4 Band-Pass Amplifiers575
10.10.5 An Active Low-Pass Filter578
10.10.6 An Active High-Pass Filter581
10.10.7 The Integrator582
10.10.8 The Differentiator586
Summary586
Key Terms588
References588
Additional Reading589
Problems589
CHAPTER 11 NONIDEAL OPERATIONAL AMPLIFIERS AND FEEDBACK AMPLIFIER STABILITY600
11.1 Classic Feedback Systems601
11.1.1 Closed-Loop Gain Analysis602
11.1.2 Gain Error602
11.2 Analysis of Circuits Containing Nonideal Operational Amplifiers603
11.2.1 Finite Open-Loop Gain603
11.2.2 Nonzero Output Resistance606
11.2.3 Finite Input Resistance610
11.2.4 Summary of Nonideal Inverting and Noninverting Amplifiiers614
11.3 Series and Shunt Feedback Circuits615
11.3.1 Feedback Amplifier Categories615
11.3.2 Voltage Amplifiers—Series-Shunt Feedback616
11.3.3 Transimpedance Amplifiers—Shunt-Shunt Feedback616
11.3.4 Current Amplifiiers—Shunt-Series Feedback616
11.3.5 Transconductance Amplifiiers—Series-Series Feedback616
11.4 Unifiied Approach to Feedback Amplifier Gain Calculation616
11.4.1 Closed-Loop Gain Analysis617
11.4.2 Resistance Calculation Using Blackman’S Theorem617
11.5 Series-Shunt Feedback-Voltage Amplifiiers617
11.5.1 Closed-Loop Gain Calculation618
11.5.2 Input Resistance Calculation618
11.5.3 Output Resistance Calculation619
11.5.4 Series-Shunt Feedback Amplifiier Summary620
11.6 Shunt-Shunt Feed back—Transresistance Amplifiers624
11.6.1 Closed-Loop Gain Calculation625
11.6.2 Input Resistance Calculation625
11.6.3 Output Resistance Calculation625
11.6.4 Shunt-Shunt Feedback Amplifier Summary626
11.7 Series-Series Feedback —Transconductance Amplifiiers629
11.7.1 Closed-Loop Gain Calculation630
11.7.2 Input Resistance Calculation630
11.7.3 Output Resistance Calculation631
11.7.4 Series-Series Feedback Amplifiier Summary631
11.8 Shunt-Series Feedback—Current Amplifiers633
11.8.1 Closed-Loop Gain Calculation634
11.8.2 Input Resistance Calculation635
11.8.3 Output Resistance Calculation635
11.8.4 Series-Series Feedback Amplifiier Summary635
11.9 Finding the Loop Gain Using Successive Voltage and Current Injection638
11.9.1 Simplifications641
11.10 Distortion Reduction Through the Use of Feedback641
11.11 DC Error Sources and Output Range Limitations642
11.11.1 Input-Offset Voltage643
11.11.2 Offset-Voltage Adjustment644
11.11.3 Input-Bias and Offset Currents645
11.11.4 Output Voltage and Current Limits647
11.12 Common-Mode Rejection and Input Resistance650
11.12.1 Finite Common-Mode Rejection Ratio650
11.12.2 Why Is CMRR Important?651
11.12.3 Voltage-Follower Gain Error Due to CMRR654
11.12.4 Common-Mode Input Resistance656
11.12.5 An Alternate Interpretation of CMRR657
11.12.6 Power Supply Rejection Ratio657
11.13 Frequency Response and Bandwidth of Operational Amplifiers659
11.13.1 Frequency Response of the NoninvertingAmplifiier661
11.13.2 Inverting Amplifiier Frequency Response664
11.13.3 Using Feedback to Control Frequency Response666
11.13.4 Large-Signal Limitations—Slew Rate and Full-Power Bandwidth668
11.13.5 Macro Model for Operational Amplifier Frequency Response669
11.13.6 Complete Op Amp Macro Models in SPICE670
11.13.7 Examples of Commercial General-Purpose Operational Amplifiiers670
11.14 Stability of Feedback Amplifiers671
11.14.1 The Nyquist Plot671
11.14.2 First-Order Systems672
11.14.3 Second-Order Systems and Phase Margin673
11.14.4 Step Response and Phase Margin674
11.14.5 Third-Order Systems and Gain Margin677
11.14.6 Determining Stability from the Bode Plot678
Summary682
Key Terms684
References684
Problems685
CHAPTER 12 OPERATIONAL AMPLIFIER APPLICATIONS697
12.1 Cascaded Amplifiiers698
12.1.1 Two-Port Representations698
12.1.2 Amplifiier Terminology Review700
12.1.3 Frequency Response of Cascaded Amplifiiers703
12.2 The Instrumentation Amplifiier711
12.3 Active Filters714
12.3.1 Low-Pass Filter714
12.3.2 A High-Pass Filter with Gain718
12.3.3 Band-Pass Filter720
12.3.4 The Tow-Thomas Biquad722
12.3.5 Sensitivity726
12.3.6 Magnitude and Frequency Scaling727
12.4 Switched-Capacitor Circuits728
12.4.1 A Switched-Capacitor Integrator728
12.4.2 Noninverting SC Integrator730
12.4.3 Switched-Capacitor Filters732
12.5 Digital-to-Analog Conversion733
12.5.1 D/A Converter Fundamentals733
12.5.2 D/A Converter Errors734
12.5.3 Digital-to-Analog Converter Circuits737
12.6 Analog-to-Digital Conversion740
12.6.1 A/D Converter Fundamentals741
12.6.2 Analog-to-Digital Converter Errors742
12.6.3 Basic A/D Conversion Techniques743
12.7 Oscillators754
12.7.1 The Barkhausen Criteria for Oscillation754
12.7.2 Oscillators Employing Frequency-Selective RC Networks755
12.8 Nonlinear Circuit Applications760
12.8.1 A Precision Half-Wave Rectifiier760
12.8.2 Nonsaturating Precision-Rectifiier Circuit761
12.9 Circuits Using Positive Feedback763
12.9.1 The Comparator and Schmitt Trigger763
12.9.2 The Astable Multivibrator765
12.9.3 The Monostable Multivibrator or One Shot766
Summary770
Key Terms772
Additional Reading773
Problems773
CHAPTER 13 SMALL-SIGNAL MODELING AND LINEAR AMPLIFICATION786
13.1 The Transistor as an Amplifier787
13.1.1 The BJT Amplifier788
13.1.2 The MOSFET Amplifier789
13.2 Coupling and Bypass Capacitors790
13.3 Circuit Analysis Using dc and ac Equivalent Circuits792
13.3.1 Menu for dc and ac Analysis792
13.4 Introduction to Small-Signal Modeling796
13.4.1 Graphical Interpretation of the Small-Signal Behavior of the Diode796
13.4.2 Small-Signal Modeling of the Diode797
13.5 Small-Signal Models for Bipolar Junction Transistors799
13.5.1 The Hybrid-Pi Model801
13.5.2 Graphical Interpretation of the Transconductance802
13.5.3 Small-Signal Current Gain802
13.5.4 The Intrinsic Voltage Gain of the BJT803
13.5.5 Equivalent Forms of the Small-Signal Model804
13.5.6 Simplifiied Hybrid Pi Model805
13.5.7 Definition of a Small Signal for the Bipolar Transistor805
13.5.8 Small-Signal Model for the pnp Transistor807
13.5.9 ac Analysis Versus Transient Analysis in SPICE807
13.6 The Common-Emitter (C-E) Amplifier808
13.6.1 Terminal Voltage Gain809
13.6.2 Input Resistance809
13.6.3 Signal Source Voltage Gain810
13.7 Important Limits and Model Simplifications810
13.7.1 A Design Guide for the Common-Emitter Amplifier810
13.7.2 Upper Bound on the Common-Emitter Gain812
13.7.3 Small-Signal Limit for the Common-emitter Amplifier812
13.8 Small-Signal Models for Field-Effect Transistors815
13.8.1 Small-Signal Model for the MOSFET815
13.8.2 Intrinsic Voltage Gain of the MOSFET817
13.8.3 Defiinition of Small-Signal Operation for the MOSFET817
13.8.4 Body Effect in the Four-Terminal MOSFET818
13.8.5 Small-Signal Model for the PMOS Transistor819
13.8.6 Small-Signal Model for the Junction Field-Effect Transistor820
13.9 Summary and Comparison of the Small-Signal Models of the BJT and FET821
13.10 The Common-Source Amplifier824
13.10.1 Common-Source Terminal Voltage Gain825
13.10.2 Signal Source Voltage Gain for the Common-Source Amplifier825
13.10.3 A Design Guide for the Common-Source Amplifier826
13.10.4 Small-Signal Limit for the Common-Source Amplifier827
13.10.5 Input Resistances of the Common-Emitter and Common-Source Amplifiers829
13.10.6 Common-Emitter and Common-Source Output Resistances832
13.10.7 Comparison of the Three Amplifier Resistances838
13.11 Common-Emitter and Common-Source Amplifier Summary838
13.11.1 Guidelines for Neglecting the Transistor Output Resistance839
13.12 Amplifier Power and Signal Range839
13.12.1 Power Dissipation839
13.12.2 Signal Range840
Summary843
Key Terms844
Problems845
CHAPTER 14 SINGLE-TRANSISTOR AMPLIFIERS857
14.1 Amplifier Classification858
14.1.1 Signal Injection and Extraction—The BJT858
14.1.2 Signal Injection and Extraction—The FET859
14.1.3 Common-Emitter (C-E) and Common-Source (C-S) Amplifiers860
14.1.4 Common-Collector (C-C) and Common-Drain (C-D) Topologies861
14.1.5 Common-Base (C-B) and Common-Gate (C-G) Amplifiers863
14.1.6 Small-Signal Model Review864
14.2 Inverting Amplifiers—Common-Emitter and Common-Source Circuits864
14.2.1 The Common-Emitter (C-E) Amplifier864
14.2.2 Common-Emitter Example Comparison877
14.2.3 The Common-Source Amplifier877
14.2.4 Small-Signal Limit for the Common-Source Amplifiier880
14.2.5 Common-Emitter and Common-Source Amplifier Characteristics884
14.2.6 C-E/C-S Amplifier Summary885
14.2.7 Equivalent Transistor Representation of the Generalized C-E/C-S Transistor885
14.3 Follower Circuits—Common-Collector and Common-Drain Amplifiers886
14.3.1 Terminal Voltage Gain886
14.3.2 Input Resistance887
14.3.3 Signal Source Voltage Gain888
14.3.4 Follower Signal Range888
14.3.5 Follower Output Resistance889
14.3.6 Current Gain890
14.3.7 C-C/C-D Amplifier Summary890
14.4 NoninvertingAmplifiers—Common-Base and Common-Gate Circuits894
14.4.1 Terminal Voltage Gain and Input Resistance895
14.4.2 Signal Source Voltage Gain896
14.4.3 Input Signal Range897
14.4.4 Resistance at the Collector and Drain Terminals897
14.4.5 Current Gain898
14.4.6 Overall Input and Output Resistances for the Noninverting Amplifiers899
14.4.7 C-B/C-G Amplifier Summary902
14.5 Amplifier Prototype Review and Comparison903
14.5.1 The BJT Amplifiiers903
14.5.2 The FET Amplifiiers905
14.6 Common-Source Amplifiers Using MOS Inverters907
14.6.1 Voltage Gain Estimate908
14.6.2 Detailed Analysis909
14.6.3 Alternative Loads910
14.6.4 Input and Output Resistances911
14.7 Coupling and Bypass Capacitor Design914
14.7.1 Common-Emitter and Common-Source Amplifiers914
14.7.2 Common-Collector and Common-Drain Amplifiers919
14.7.3 Common-Base and Common-Gate Amplifiers921
14.7.4 Setting Lower Cutoff Frequency f L924
14.8 Amplifiier Design Examples925
14.8.1 Monte Carlo Evaluation of the Common-Base Amplifier Design934
14.9 Multistage ac-Coupled Amplifiers939
14.9.1 A Three-Stage ac-Coupled Amplifiier939
14.9.2 Voltage Gain941
14.9.3 Input Resistance943
14.9.4 Signal Source Voltage Gain943
14.9.5 Output Resistance943
14.9.6 Current and Power Gain944
14.9.7 Input Signal Range945
14.9.8 Estimating the Lower Cutoff Frequency of the Multistage Amplifier948
Summary950
Key Terms951
Additional Reading952
Problems952
CHAPTER 15 DIFFERENTIAL AMPLIFIERS AND OPERATIONAL AMPLIFIER DESIGN968
15.1 Differential Amplifiers969
15.1.1 Bipolar and MOS Differential Amplifiiers969
15.1.2 dc Analysis of the Bipolar Differential Amplifiier970
15.1.3 Transfer Characteristic for the Bipolar Differential Amplifier972
15.1.4 ac Analysis of the Bipolar Differential Amplifier973
15.1.5 Differential-Mode Gain and Input and Output Resistances974
15.1.6 Common-Mode Gain and Input Resistance976
15.1.7 Common-Mode Rejection Ratio (CMRR)978
15.1.8 Analysis Using Differential- and Common-Mode Half-Circuits979
15.1.9 Biasing with Electronic Current Sources982
15.1.10 Modeling the Electronic Current Source in SPICE983
15.1.11 dc Analysis of the MOSFET Differential Amplifier983
15.1.12 Differential-Mode Input Signals985
15.1.13 Small-Signal Transfer Characteristic for the MOS Differential Amplifiier986
15.1.14 Common-Mode Input Signals986
15.1.15 Two-Port Model for Differential Pairs987
15.2 Evolution to Basic Operational Amplifiiers991
15.2.1 A Two-Stage Prototype for an Operational Amplifier992
15.2.2 Improving the Op Amp Voltage Gain997
15.2.3 Output Resistance Reduction998
15.2.4 A CMOS Operational Amplifiier Prototype1002
15.2.5 BiCMOS Amplifiers1004
15.2.6 All Transistor Implementations1004
15.3 Output Stages1006
15.3.1 The Source Follower—A Class-A Output Stage1006
15.3.2 Efficiency of Class-A Amplifiers1007
15.3.3 Class-B Push-Pull Output Stage1008
15.3.4 Class-AB Amplifiers1010
15.3.5 Class-AB Output Stages for Operational Amplifiers1011
15.3.6 Short-Circuit Protection1011
15.3.7 Transformer Coupling1013
15.4 Electronic Current Sources1016
15.4.1 Single-Transistor Current Sources1017
15.4.2 Figure of Merit for Current Sources1017
15.4.3 Higher Output Resistance Sources1018
15.4.4 Current Source Design Examples1018
Summary1027
Key Terms1028
References1029
Additional Reading1029
Problems1029
CHAPTER 16 ANALOG INTEGRATED CIRCUIT DESIGN TECHNIQUES1046
16.1 Circuit Element Matching1047
16.2 Current Mirrors1049
16.2.1 dc Analysis of the MOS Transistor Current Mirror1049
16.2.2 Changing the MOS Mirror Ratio1051
16.2.3 dc Analysis of the Bipolar Transistor Current Mirror1052
16.2.4 Altering the BJT Current Mirror Ratio1054
16.2.5 Multiple Current Sources1055
16.2.6 Buffered Current Mirror1056
16.2.7 Output Resistance of the Current Mirrors1057
16.2.8 Two-Port Model for the Current Mirror1058
16.2.9 The Widlar Current Source1060
16.2.10 The MOS Version of the Widlar Source1063
16.3 High-Output-Resistance Current Mirrors1063
16.3.1 The Wilson Current Sources1064
16.3.2 Output Resistance of the Wilson Source1065
16.3.3 Cascode Current Sources1066
16.3.4 Output Resistance of the Cascode Sources1067
16.3.5 Regulated Cascode Current Source1068
16.3.6 Current Mirror Summary1069
16.4 Reference Current Generation1072
16.5 Supply-Independent Biasing1073
16.5.1 A VBE-Based Reference1073
16.5.2 The Widlar Source1073
16.5.3 Power-Supply-Independent Bias Cell1074
16.5.4 A Supply-Independent MOS Reference Cell1075
16.6 The Bandgap Reference1077
16.7 The Current Mirror As an Active Load1081
16.7.1 CMOS Differential Amplifier with Active Load1081
16.7.2 Bipolar Differential Amplifier with Active Load1088
16.8 Active Loads in Operational Amplifiers1092
16.8.1 CMOS Op Amp Voltage Gain1092
16.8.2 dc Design Considerations1093
16.8.3 Bipolar Operational Amplifiers1095
16.8.4 Input Stage Breakdown1096
16.9 The μA741 Operational Amplifier1097
16.9.1 Overall Circuit Operation1097
16.9.2 Bias Circuitry1098
16.9.3 dc Analysis of the 741 Input Stage1099
16.9.4 ac Analysis of the 741 Input Stage1102
16.9.5 Voltage Gain of the Complete Amplifier1103
16.9.6 The 741 Output Stage1107
16.9.7 Output Resistance1109
16.9.8 Short Circuit Protection1109
16.9.9 Summary of the μA741 Operational Amplifiier Characteristics1109
16.10 The Gilbert Analog Multiplier1110
Summary1112
Key Terms1113
References1114
Problems1114
CHAPTER 17 AMPLIFIER FREQUENCY RESPONSE1128
17.1 Amplifier Frequency Response1129
17.1.1 Low-Frequency Response1130
17.1.2 Estimating ωL in the Absence of a Dominant Pole1130
17.1.3 High-Frequency Response1133
17.1.4 Estimating ωH in the Absence of a Dominant Pole1133
17.2 Direct Determination of the Low-Frequency Poles and Zeros—The Common-Source Amplifiier1134
17.3 Estimation of ωL Using the Short-Circuit Time-Constant Method1139
17.3.1 Estimate of ωL for the Common-Emitter Amplifier1140
17.3.2 Estimate of ωL for the Common-Source Amplifier1144
17.3.3 Estimate of ωL for the Common-Base Amplifier1145
17.3.4 Estimate of ωL for the Common-Gate Amplifier1146
17.3.5 Estimate of ωL for the Common-CollectorAmplifier1147
17.3.6 Estimate of ωL for the Common-Drain Amplifier1147
17.4 Transistor Models at High Frequencies1148
17.4.1 Frequency-Dependent Hybrid-Pi Model for the Bipolar Transistor1148
17.4.2 Modeling Cπ and Cμ in SPICE1149
17.4.3 Unity-Gain Frequency fT1149
17.4.4 High-Frequency Model for the FET1152
17.4.5 Modeling CGs and CGD in SPICE1153
17.4.6 Channel Length Dependence of fT1153
17.4.7 Limitations of the High-Frequency Models1155
17.5 Base Resistance in the Hybrid-Pi Model1155
17.5.1 Effect of Base Resistance on Midband Amplifiers1156
17.6 High-Frequency Common-Emitter and Common-Source Amplifier Analysis1158
17.6.1 The Miller Effect1159
17.6.2 Common-Emitter and Common-Source Amplifier High-Frequency Response1160
17.6.3 Direct Analysis of the Common-Emitter Transfer Characteristic1162
17.6.4 Poles of the Common-Emitter Amplifier1163
17.6.5 Dominant Pole for the Common-Source Amplifier1166
17.6.6 Estimation of ωH Using the Open-Circuit Time-Constant Method1167
17.6.7 Common-Source Amplifiier with Source Degeneration Resistance1170
17.6.8 Poles of the Common-Emitter with Emitter Degeneration Resistance1172
17.7 Common-Base and Common-Gate Amplifier High-Frequency Response1174
17.8 Common-Collector and Common-Drain Amplifier High-Frequency Response1177
17.9 Single-Stage Amplifiier High-Frequency Response Summary1179
17.9.1 Amplifier Gain-Bandwidth Limitations1180
17.10 Frequency Response of Multistage Amplifiiers1181
17.10.1 Differential Amplifier1181
17.10.2 The Common-Collector/Common-Base Cascade1182
17.10.3 High-Frequency Response of the Cascode Amplifier1184
17.10.4 Cutoff Frequency for the Current Mirror1185
17.10.5 Three-Stage Amplifier Example1187
17.11 Introduction to Radio Frequency Circuits1193
17.11.1 Radio Frequency Amplifiiers1194
17.11.2 The Shunt-Peaked Amplifier1194
17.11.3 Single-Tuned Amplifier1197
17.11.4 Use of a Tapped Inductor—The Auto Transformer1199
17.11.5 Multiple Tuned Circuits—Synchronous and Stagger Tuning1201
17.11.6 Common-Source Amplifier with Inductive Degeneration1202
17.12 Mixers and Balanced Modulators1205
17.12.1 Introduction to Mixer Operation1205
17.12.2 A Single-Balanced Mixer1206
17.12.3 The Differential Pair as a Single-Balanced Mixer1207
17.12.4 A Double-Balanced Mixer1208
17.12.5 The Gilbert Multiplier as a Double-Balanced Mixer/Modulator1210
Summary1213
Key Terms1215
Reference1215
Problems1215
CHAPTER18 TRANSISTOR FEEDBACK AMPLIFIERS AND OSCILLATORS1228
18.1 Basic Feedback System Review1229
18.1.1 Closed-Loop Gain1229
18.1.2 Closed-Loop impedances1230
18.1.3 Feedback Effects1230
18.2 Feedback Amplifier Analysis at Midband1232
18.3 Feedback Amplifier Circuit Examples1234
18.3.1 Series-Shunt Feedback—Voltage Amplifiers1234
18.3.2 Differential Input Series-Shunt Voltage Amplifier1239
18.3.3 Shunt-Shunt Feedback —Transresistance Amplifiers1242
18.3.4 Series-Series Feedback —Transconductance Amplifiers1248
18.3.5 Shunt-Series Feedback—Current Amplifiers1251
18.4 Review of Feedback Amplifier Stability1254
18.4.1 Closed-Loop Response of the Uncompensated Amplifier1254
18.4.2 Phase Margin1256
18.4.3 Higher-Order Effects1259
18.4.4 Response of the Compensated Amplifier1260
18.4.5 Small-Signal Limitations1262
18.5 Single-Pole Operational Amplifiier Compensation1262
18.5.1 Three-Stage Op Amp Analysis1263
18.5.2 Transmission Zeros in FET Op Amps1265
18.5.3 Bipolar Amplifier Compensation1266
18.5.4 Slew Rate of the Operational Amplifier1266
18.5.5 Relationships Between Slew Rate and Gain-Bandwidth Product1268
18.6 High-Frequency Oscillators1277
18.6.1 The Colpitts Oscillator1278
18.6.2 The Hartley Oscillator1279
18.6.3 Amplitude Stabilization in LC Oscillators1280
18.6.4 Negative Resistance in Oscillators1280
18.6.5 Negative GM Oscillator1281
18.6.6 Crystal Oscillators1283
Summary1287
Key Terms1289
References1289
Problems1289
APPENDIXES1300
A Standard Discrete Component Values1300
B Solid-State Device Models and SPICE Simulation Parameters1303
C Two-Port Review1310
Index1313