图书介绍

Modern Graph TheoryPDF|Epub|txt|kindle电子书版本网盘下载

Modern Graph Theory
  • Bela Bollobas 著
  • 出版社: Springer
  • ISBN:0387984889
  • 出版时间:1998
  • 标注页数:400页
  • 文件大小:51MB
  • 文件页数:417页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Modern Graph TheoryPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ Fundamentals1

Ⅰ.1 Definitions1

Ⅰ.2 Paths,Cycles,and Trees8

Ⅰ.3 Hamilton Cycles and Euler Circuits14

Ⅰ.4 Planar Graphs20

Ⅰ.5 An Application of Euler Trails to Algebra25

Ⅰ.6 Exercises28

Ⅱ Electcical Networks39

Ⅱ.1 Graphs and Electrical Networks39

Ⅱ.2 Squaring the Square46

Ⅱ.3 Vector Spaces and Matrices Associated with Graphs51

Ⅱ.4 Exercises58

Ⅱ.5 Notes66

Ⅲ Flows,Connectivity and Matching67

Ⅲ.1 Flows in Directed Graphs68

Ⅲ.2 Connectivity and Menger’s Theorem73

Ⅲ.3 Matching76

Ⅲ.4 Tutte’s 1-Factor Theorem82

Ⅲ.5 Stable Matchings85

Ⅲ.6 Exercises91

Ⅲ.7 Notes101

Ⅳ Extremal Problems103

Ⅳ.1 Paths and Cycles104

Ⅳ.2 Complete Subgraphs108

Ⅳ.3 Hamilton Paths and Cycles115

Ⅳ.4 The Structure of Graphs120

Ⅳ.5 Szemeredi’s Regularity Lemma124

Ⅳ.6 Simple Applications of Szemeredi’s Lemma130

Ⅳ.7 Exercises135

Ⅳ.8 Notes142

Ⅴ Colouring145

Ⅴ.1 Vertex Colouring146

Ⅴ.2 Edge Colouring152

Ⅴ.3 Graphs on Surfaces154

Ⅴ.4 List Colouring161

Ⅴ.5 Perfect Graphs165

Ⅴ.6 Exercises170

Ⅴ.7 Notes177

Ⅵ Ramsey Theory181

Ⅵ.1 The Fundamental Ramsey Theorems182

Ⅵ.2 Canonical Ramsey Theorems189

Ⅵ.3 Ramsey Theory For Graphs192

Ⅵ.4 Ramsey Theory for Integers197

Ⅵ.5 Subsequences205

Ⅵ.6 Exercises208

Ⅵ.7 Notes213

Ⅶ Random Graphs215

Ⅶ.1 The Basic Models—The Use of the Expectation216

Ⅶ.2 Simple Properties of Almost All Graphs225

Ⅶ.3 Almost Determined Variables—The Use of the Variance228

Ⅶ.4 Hamilton Cycles—The Use of Graph Theoretic Tools236

Ⅶ.5 The Phase Transition240

Ⅶ.6 Exercises246

Ⅶ.7 Notes251

Ⅷ Graphs,Groups and Matrices253

Ⅷ.1 Cayley and Schreier Diagrams254

Ⅷ.2 The Adjacency Matrix and the Laplacian262

Ⅷ.3 Strongly Regular Graphs270

Ⅷ.4 Enumeration and P6lya’s Theorem276

Ⅷ.5 Exercises283

Ⅸ Random Walks on Graphs295

Ⅸ.1 Electrical Networks Revisited296

Ⅸ.2 Electrical Networks and Random Walks301

Ⅸ.3 Hitting Times and Commute Times309

Ⅸ.4 Conductance and Rapid Mixing319

Ⅸ.5 Exercises327

Ⅸ.6 Notes333

X The Tutte Polynomial335

X.1 Basic Properties of the Tutte Polynomial336

X.2 The Universal Form of the Tutte Polynomial340

X.3 The Tutte Polynomial in Statistical Mechanics342

X.4 Special Values of the Tutte Polynomial345

X.5 A Spanning Tree Expansion of the Tutte Polynomial350

X.6 Polynomials of Knots and Links358

X.7 Exercises371

X.8 Notes377

Symbol Index379

Name Index383

Subject Index387

热门推荐