图书介绍

矩阵分析 英文PDF|Epub|txt|kindle电子书版本网盘下载

矩阵分析 英文
  • (印)巴蒂亚著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510033056
  • 出版时间:2011
  • 标注页数:349页
  • 文件大小:59MB
  • 文件页数:361页
  • 主题词:矩阵分析-研究生-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

矩阵分析 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Ⅰ A Review of Linear Algebra1

Ⅰ.1 Vector Spaces and Inner Product Spaces1

Ⅰ.2 Linear Operators and Matrices3

Ⅰ.3 Direct Sums9

Ⅰ.4 Tensor Products12

Ⅰ.5 Symmetry Classes16

Ⅰ.6 Problems20

Ⅰ.7 Notes and References26

Ⅱ Majorisation and Doubly Stochastic Matrices28

Ⅱ.1 Basic Notions28

Ⅱ.2 Birkhoff's Theorem36

Ⅱ.3 Convex and Monotone Functions40

Ⅱ.4 Binary Algebraic Operations and Majorisation48

Ⅱ.5 Problems50

Ⅱ.6 Notes and References54

Ⅲ Variational Principles for Eigenvalues57

Ⅲ.1 The Minimax Principle for Eigenvalues57

Ⅲ.2 Weyl's Inequalities62

Ⅲ.3 Wielandt's Minimax Principle65

Ⅲ.4 Lidskii's Theorems68

Ⅲ.5 Eigenvalues of Real Parts and Singular Values73

Ⅲ.6 Problems75

Ⅲ.7 Notes and References78

Ⅳ Symmetric Norms84

Ⅳ.1 Norms on Cn84

Ⅳ.2 Unitarily Invariant Norms on Operators on Cn91

Ⅳ.3 Lidskii's Theorem (Third Proof)98

Ⅳ.4 Weakly Unitarily Invariant Norms101

Ⅳ.5 Problems107

Ⅳ.6 Notes and References109

Ⅴ Operator Monotone and Operator Convex Functions112

Ⅴ.1 Definitions and Simple Examples112

Ⅴ.2 Some Characterisations117

Ⅴ.3 Smoothness Properties123

Ⅴ.4 Loewner's Theorems131

Ⅴ.5 Problems147

Ⅴ.6 Notes and References149

Ⅵ Spectral Variation of Normal Matrices152

Ⅵ.1 Continuity of Roots of Polynomials153

Ⅵ.2 Hermitian and Skew-Hermitian Matrices155

Ⅵ.3 Estimates in the Operator Norm159

Ⅵ.4 Estimates in the Frobenius Norm165

Ⅵ.5 Geometry and Spectral Variation:the Operator Norm.168

Ⅵ.6 Geometry and Spectral Variation:wui Norms173

Ⅵ.7 Some Inequalities for the Determinant181

Ⅵ.8 Problems184

Ⅵ.9 Notes and References190

Ⅶ Perturbation of Spectral Subspaces of Normal Matrices194

Ⅶ.1 Pairs of Subspaces195

Ⅶ.2 The Equation AX-XB=Y203

Ⅶ.3 Perturbation of Eigenspaces211

Ⅶ.4 A Perturbation Bound for Eigenvalues212

Ⅶ.5 Perturbation of the Polar Factors213

Ⅶ.6 Appendix: Evaluating the (Fourier) constants216

Ⅶ.7 Problems221

Ⅶ.8 Notes and References223

Ⅷ Spectral Variation of Nonnormal Matrices226

Ⅷ.1 General Spectral Variation Bounds227

Ⅷ.4 Matrices with Real Eigenvalues238

Ⅷ.5 Eigenvalues with Symmetries240

Ⅷ.6 Problems244

Ⅷ.7 Notes and References249

Ⅸ A Selection of Matrix Inequalities253

Ⅸ.1 Some Basic Lemmas253

Ⅸ.2 Products of Positive Matrices255

Ⅸ.3 Inequalities for the Exponential Function258

Ⅸ.4 Arithmetic-Geometric Mean Inequalities262

Ⅸ.5 Schwarz Inequalities266

Ⅸ.6 The Lieb Concavity Theorem271

Ⅸ.7 Operator Approximation275

Ⅸ.8 Problems279

Ⅸ.9 Notes and References285

Ⅹ Perturbation of Matrix Functions289

Ⅹ.1 Operator Monotone Functions289

Ⅹ.2 The Absolute Value296

Ⅹ.3 Local Perturbation Bounds301

Ⅹ.4 Appendix: Differential Calculus310

Ⅹ.5 Problems317

Ⅹ.6 Notes and References320

References325

Index339

热门推荐