图书介绍

可靠性参数的修正bayes估计法及其应用PDF|Epub|txt|kindle电子书版本网盘下载

可靠性参数的修正bayes估计法及其应用
  • 韩明编译 著
  • 出版社: 上海:同济大学出版社
  • ISBN:9787560842493
  • 出版时间:2010
  • 标注页数:238页
  • 文件大小:7MB
  • 文件页数:249页
  • 主题词:试验分析(数学)

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

可靠性参数的修正bayes估计法及其应用PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 绪论1

1.1 Bayes方法的研究与应用1

1.2 参数的修正Bayes估计法概述3

1.3 参数的E-Bayes估计法4

1.3.1 一个超参数情形4

1.3.2 两个超参数情形5

1.4 参数的M-Bayes可信限法5

1.4.1 单侧M-Bayes可信限5

1.4.2 双侧M-Bayes可信限7

1.5 基本函数和常见的寿命分布8

1.5.1 基本函数8

1.5.2 常见的寿命分布9

1.6 本书的结构示意图10

2 λ的估计11

2.1 λ的E-Bayes估计——一个超参数情形Ⅰ11

2.1.1 λ的E-Bayes估计的定义11

2.1.2 λ的E-Bayes估计12

2.1.3 λ的多层Bayes估计14

2.1.4 E-Bayes估计的性质17

2.1.5 应用实例22

2.2 λ的E-Bayes估计——一个超参数情形Ⅱ25

2.2.1 λ的E-Bayes估计的定义25

2.2.2 λ的E-Bayes估计26

2.2.3 λ的多层Bayes估计28

2.2.4 E-Bayes估计的性质30

2.2.5 应用实例34

2.3 λ的E-Bayes估计——两个超参数情形36

2.3.1 λ的E-Bayes估计的定义36

2.3.2 λ的E-Bayes估计37

2.3.3 λ的多层Bayes估计39

2.3.4 E-Bayes估计的性质42

2.3.5 模拟算例45

2.3.6 应用实例47

2.4 λ的单侧M-Bayes可信限Ⅰ49

2.4.1 λ的单侧M-Bayes可信上限的定义50

2.4.2 λ的单侧M-Bayes可信上限的估计50

2.4.3 单侧M-Bayes可信限的性质52

2.4.4 应用实例56

2.5 λ的单侧M-Bayes可信限Ⅱ59

2.5.1 λ的单侧M-Bayes可信限的定义59

2.5.2 λ的单侧M-Bayes可信限的估计61

2.5.3 单侧M-Bayes可信限的性质63

2.5.4 应用实例66

2.6 λ的双侧M-Bayes可信限70

2.6.1 λ的双侧M-Bayes可信限的定义70

2.6.2 λ的双侧M-Bayes可信限的估计72

2.6.3 双侧M-Bayes可信限的性质75

2.6.4 应用实例79

3 pi的估计83

3.1 pi的E-Bayes估计——一个超参数情形Ⅰ83

3.1.1 pi的E-Bayes估计的定义83

3.1.2 pi的E-Bayes估计84

3.1.3 pi的多层Bayes估计86

3.1.4 pi的E-Bayes估计的性质87

3.1.5 模拟算例92

3.2 pi的E-Bayes估计——一个超参数情形Ⅱ94

3.2.1 pi的E-Bayes估计的定义94

3.2.2 pi的E-Bayes估计95

3.2.3 pi的多层Bayes估计96

3.2.4 pi的E-Bayes估计的性质97

3.2.5 应用实例100

3.3 pi的E-Bayes估计——一个超参数情形Ⅲ101

3.3.1 pi的E-Bayes估计101

3.3.2 pi的多层Bayes估计103

3.3.3 pi的E-Bayes估计的性质105

3.3.4 模拟算例109

3.3.5 应用实例113

3.4 pi的E-Bayes估计——两个超参数情形116

3.4.1 pi的E-Bayes估计的定义116

3.4.2 pi的E-Bayes估计117

3.4.3 pi的E-Bayes估计的性质119

3.4.4 模拟算例122

3.4.5 应用实例124

3.4.6 pi的多层Bayes估计125

3.4.7 pi的多层Bayes估计的性质128

4 R的估计134

4.1 R的E-Bayes估计——一个超参数情形Ⅰ134

4.1.1 R的E-Bayes估计的定义134

4.1.2 R的E-Bayes估计136

4.1.3 R的多层Bayes估计137

4.1.4 E-Bayes估计的性质138

4.1.5 应用实例142

4.2 R的E-Bayes估计——一个超参数情形Ⅱ143

4.2.1 R的E-Bayes估计的定义143

4.2.2 R的E-Bayes估计144

4.2.3 R的多层Bayes估计146

4.2.4 E-Bayes估计的性质147

4.2.5 模拟算例150

4.3 R的E-Bayes估计——一个超参数情形Ⅲ152

4.3.1 R的E-Bayes估计的定义152

4.3.2 R的E-Bayes估计153

4.3.3 R的多层Bayes估计155

4.3.4 E-Bayes估计的性质157

4.3.5 模拟算例162

4.4 R的E-Bayes估计——两个超参数情形168

4.4.1 R的E-Bayes估计的定义168

4.4.2 R的E-Bayes估计169

4.4.3 E-Bayes估计的性质170

4.4.4 模拟算例173

4.4.5 R的多层Bayes估计175

4.4.6 模拟算例177

4.5 R的单侧M-Bayes可信限179

4.5.1 R的单侧M-Bayes可信下限的定义179

4.5.2 R的单侧M-Bayes可信下限的估计180

4.5.3 单侧M-Bayes可信限的性质181

4.5.4 模拟算例184

4.6 R的双侧M-Bayes可信限186

4.6.1 R的双侧M-Bayes可信限的定义186

4.6.2 双侧M-Bayes可信限的估计187

4.6.3 双侧M-Bayes可信限的性质190

4.6.4 模拟算例193

5 分布参数的估计196

5.1 分布参数的最小二乘估计196

5.1.1 指数分布中分布参数的最小二乘估计196

5.1.2 双参数指数分布中分布参数的最小二乘估计199

5.1.3 对数正态分布中分布参数的最小二乘估计201

5.1.4 Weibull分布中分布参数的最小二乘估计204

5.2 位置-尺度参数模型中分布参数的最小二乘估计206

5.2.1 关于位置-尺度参数模型206

5.2.2 μ和σ的最小二乘估计208

5.2.3 应用实例210

5.3 分布参数的加权综合估计213

5.3.1 指数分布中分布参数的加权综合估计Ⅰ213

5.3.2 指数分布中分布参数的加权综合估计Ⅱ221

5.3.3 由pi的估计求分布参数的加权综合估计224

研究总结230

参考文献232

热门推荐