图书介绍
随机波动金融市场衍生品 英文版PDF|Epub|txt|kindle电子书版本网盘下载
- (法)伏格著 著
- 出版社: 北京;西安:世界图书出版公司
- ISBN:9787510005756
- 出版时间:2010
- 标注页数:201页
- 文件大小:9MB
- 文件页数:214页
- 主题词:金融市场-研究-英文
PDF下载
下载说明
随机波动金融市场衍生品 英文版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 The Black-Scholes Theory of Derivative Pricing1
1.1 Market Model1
1.1.1 Brownian Motion2
1.1.2 Stochastic Integrals3
1.1.3 Risky Asset Price Model4
1.1.4 It?'s Formula6
1.1.5 Lognormal Risky Asset Price8
1.2 Derivative Contracts8
1.2.1 European Call and Put Options9
1.2.2 American Options10
1.2.3 Other Exotic Options11
1.3 Replicating Strategies12
1.3.1 Replicating Self-Financing Portfolios12
1.3.2 The Black-Scholes Partial Differential Equation13
1.3.3 Pricing to Hedge15
1.3.4 The Black-Scholes Formula15
1.4 Risk-Neutral Pricing18
1.4.1 Equivalent Martingale Measure19
1.4.2 Self-Financing Portfolios20
1.4.3 Risk-Neutral Valuation21
1.4.4 Using the Markov Property22
1.5 Risk-Neutral Expectations and Partial Differential Equations23
1.5.1 Infinitesimal Generators and Associated Martingales24
1.5.2 Conditional Expectations and Parabolic Partial Differential Equations25
1.5.3 Application to the Black-Scholes Partial Differential Equation26
1.5.4 American Options and Free Boundary Problems27
1.5.5 Path-Dependent Derivatives29
1.6 Complete Market31
2 Introduction to Stochastic Volatility Models33
2.1 Implied Volatility and the Smile Curve34
2.1.1 Interpretation of the Smile Curve35
2.1.2 What Data to Use37
2.2 Implied Deterministic Volatility38
2.2.1 Time-Dependent Volatility38
2.2.2 Level-Dependent Volatility39
2.2.3 Short-Time Tight Fit versus Long-Time Rough Fit39
2.3 Stochastic Volatility Models40
2.3.1 Mean-Reverting Stochastic Volatility Models40
2.3.2 Stock-Price Distribution under Stochastic Volatility42
2.4 Derivative Pricing42
2.5 Pricing with Equivalent Martingale Measures46
2.6 Implied Volatility as a Function of Moneyness48
2.7 Market Price of Volatility Risk and Data49
2.8 Special Case:Uncorrelated Volatility51
2.8.1 Hull-White Formula51
2.8.2 Stochastic Volatility Implies Smile51
2.8.3 Remark on Correlated Volatility53
2.9 Summary and Conclusions55
3 Scales in Mean-Reverting Stochastic Volatility58
3.1 Scaling in Simple Models58
3.2 Models of Clustering59
3.2.1 Example:Markov Chain60
3.2.2 Example:Another Jump Process64
3.2.3 Example:Ornstein-Uhlenbeck Process67
3.2.4 Summary70
3.3 Convergence to Black-Scholes under Fast Mean-Reverting Volatility70
3.4 Scales in the Returns Process71
3.4.1 The Returns Process72
3.4.2 Returns Process with Jump Volatility72
3.4.3 Returns Process with OU Volatility73
3.4.4 S&P 500 Returns Process75
4 Tools for Estimating the Rate of Mean Reversion77
4.1 Model and Data77
4.1.1 Mean-Reverting Stochastic Volatility77
4.1.2 Discrete Data78
4.2 Variogram Analysis79
4.2.1 Computation of the Variogram79
4.2.2 Comparison and Sensitivity Analysis with Simulated Data80
4.2.3 The Day Effect83
4.3 Spectral Analysis84
5 Asymptotics for Pricing European Derivatives87
5.1 Preliminaries87
5.1.1 The Rescaled Stochastic Volatility Model88
5.1.2 The Rescaled Pricing Equation88
5.1.3 The Operator Notation89
5.2 The Formal Expansion90
5.2.1 The Diverging Terms90
5.2.2 Poisson Equations91
5.2.3 The Zero-Order Term93
5.2.4 The First Correction94
5.2.5 Universal Market Group Parameters96
5.2.6 Probabilistic Interpretation of the Source Term97
5.2.7 Put-Call Parity98
5.2.8 The Skew Effect98
5.3 Implied Volatilities and Calibration99
5.4 Accuracy of the Approximation102
5.5 Region of Validity104
6 Implementation and Stability108
6.1 Step-by-Step Procedure108
6.2 Comments about the Method109
6.3 Dividends112
6.4 The Second Correction113
7 Hedging Strategies115
7.1 Black-Scholes Delta Hedging115
7.1.1 The Strategy and Its Cost116
7.1.2 Averaging Effect117
7.2 Mean Self-Financing Hedging Strategy119
7.3 Staying Close to the Price121
8 Application to Exotic Derivatives124
8.1 European Binary Options124
8.2 Barrier Options125
8.3 Asian Options129
9 Application to American Derivatives132
9.1 American Problem under Stochastic Volatility132
9.2 Stochastic Volatility Correction for an American Put133
9.2.1 Expansions134
9.2.2 First Approximation136
9.2.3 The Stochastic Volatility Correction138
9.2.4 Uncorrelated Volatility140
9.2.5 Probabilistic Representation141
9.3 Numerical Computation141
9.3.1 Solution of the Black-Scholes Problem141
9.3.2 Computation of the Correction142
10 Generalizations145
10.1 Portfolio Optimization under Stochastic Volatility145
10.1.1 Constant Volatility Merton Problem145
10.1.2 Stochastic Volatility Merton Problem147
10.1.3 A Practical Solution151
10.2 Periodic Day Effect153
10.3 Other Markovian Volatility Models156
10.3.1 Markovian Jump Volatility Models156
10.3.2 Pricing and Asymptotics158
10.4 Martingale Approach159
10.4.1 Main Argument159
10.4.2 Decomposition Result161
10.4.3 Comparison with the PDE Approach164
10.5 Non-Markovian Models of Volatility165
10.5.1 Setting:An Example165
10.5.2 Asymptotics in the Non-Markovian Case166
10.6 Multidimensional Models169
11 Applications to Interest-Rate Models174
11.1 Bond Pricing in the Vasicek Model174
11.1.1 Review of the Constant Volatility Vasicek Model174
11.1.2 Stochastic Volatility Vasicek Models177
11.2 Bond Option Pricing182
11.2.1 The Constant Volatility Case183
11.2.2 Correction for Stochastic Volatility185
11.2.3 Implications189
11.3 Asymptotics around the CIR Model190
11.4 Illustration from Data192
11.4.1 Variogram Analysis192
11.4.2 Yield Curve Fitting193
Bibliography195
Index199