图书介绍

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文PDF|Epub|txt|kindle电子书版本网盘下载

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文
  • (法)雅克·朗西埃著 著
  • 出版社:
  • ISBN:
  • 出版时间:2014
  • 标注页数:0页
  • 文件大小:95MB
  • 文件页数:622页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Part Ⅰ The Basic Equations3

1 Coordinates,Mass Distribution,and Gravitational Field in Spherical Stars3

1.1 Eulerian Description3

1.2 Lagrangian Description4

1.3 The Gravitational Field6

2 Conservation of Momentum9

2.1 Hydrostatic Equilibrium9

2.2 The Role of Density and Simple Solutions10

2.3 Simple Estimates of Central Values Pc,Tc12

2.4 The Equation of Motion for Spherical Symmetry13

2.5 The Non-spherical Case15

2.6 Hydrostatic Equilibrium in General Relativity15

2.7 The Piston Model17

3 The Virial Theorem19

3.1 Stars in Hydrostatic Equilibrium19

3.2 The Virial Theorem of the Piston Model21

3.3 The Kelvin-Helrnholtz Timescale22

3.4 The Virial Theorem for Non-vanishing Surface Pressure23

4 Conservation of Energy25

4.1 Thermodynamic Relations25

4.2 The Perfect Gas and the Mean Molecular Weight28

4.3 Thermodynamic Quantities for the Perfect,Monatomic Gas30

4.4 Energy Conservation in Stars31

4.5 Global and Local Energy Conservation33

4.6 Timescales35

5 Transport of Energy by Radiation and Conduction37

5.1 Radiative Transport of Energy37

5.1.1 Basic Estimates37

5.1.2 Diffusion of Radiative Energy38

5.1.3 The Rosseland Mean for Kv40

5.2 Conductive Transport of Energy42

5.3 The Thermal Adjustment Time of a Star43

5.4 Thermal Properties of the Piston Model45

6 Stability Against Local,Non-spherical Perturbations47

6.1 Dynamical Instability47

6.2 Oscillation of a Displaced Element52

6.3 Vibrational Stability54

6.4 The Thermal Adiustment Time55

6.5 Secular Instability56

6.6 The Stability of the Piston Model58

7 Transport of Energy by Convection61

7.1 The Basic Picture62

7.2 Dimensionless Equations65

7.3 Limiting Cases,Solutions,Discussion66

7.4 Extensions of the Mixing-Length Theory70

8 The Chemical Composition73

8.1 Relative Mass Abundances73

8.2 Variation of Composition with Time74

8.2.1 Radiative Regions74

8.2.2 Diffusion76

8.2.3 Convective Regions80

9 Mass Loss83

Part Ⅱ The Overall Problem89

10 The Differential Equations of Stellar Evolution89

10.1 The Full Set of Equations89

10.2 Timescales and Simplifications91

11 Boundary Conditions93

11.1 Central Conditions93

11.2 Surface Conditions95

11.3 Influence of the Surface Conditions and Properties of Envelope Solutions98

11.3.1 Radiative Envelopes98

11.3.2 Convective Envelopes101

11.3.3 Summary102

11.3.4 The T-r Stratification102

12 Numerical Procedure105

12.1 The Shooting Method105

12.2 The Henyey Method106

12.3 Treatment of the First-and Second-Order Time Derivatives113

12.4 Treatment of the Diffusion Equation115

12.5 Treatment of Mass Loss117

12.6 Existence and Uniqueness118

Part Ⅲ Properties of Stellar Matter123

13 The Perfect Gas with Radiation123

13.1 Radiation Pressure123

13.2 Thermodynamic Quantities124

14 Ionization127

14.1 The Boltzmann and Saha Formulae127

14.2 Ionization of Hydrogen130

14.3 Thermodynamical Quantities for a Pure Hydrogen Gas132

14.4 Hydrogen-Helium Mixtures133

14.5 The General Case135

14.6 Limitation of the Saha Formula137

15 The Degenerate Electron Gas139

15.1 Consequences of the Pauli Principle139

15.2 The Completely Degenerate Electron Gas140

15.3 Limiting Cases144

15.4 Partial Degeneracy of the Electron Gas145

16 The Equation of State of Stellar Matter151

16.1 The Ion Gas151

16.2 The Equation of State152

16.3 Thermodynamic Quantities154

16.4 Crystallization157

16.5 Neutronization158

16.6 Real Gas Effects159

17 Opacity163

17.1 Electron Scattering163

17.2 Absorption Due to Free-Free Transitions164

17.3 Bound-Free Transitions165

17.4 Bound-Bound Transitions166

17.5 The Negative Hydrogen Ion168

17.6 Conduction169

17.7 Molecular Opacities170

17.8 Opacity Tables172

18 Nuclear Energy Production175

18.1 Basic Considerations175

18.2 Nuclear Cross Sections179

18.3 Thermonuclear Reaction Rates182

18.4 Electron Shielding188

18.5 The Major Nuclear Burning Stages192

18.5.1 Hydrogen Burning193

18.5.2 Helium Burning197

18.5.3 Carbon Burning and Beyond199

18.6 Neutron-Capture Nucleosynthesis201

18.7 Neutrinos205

Part Ⅳ Simple Stellar Models213

19 Polytropic Gaseous Spheres213

19.1 Polytropic Relations213

19.2 Polytropic Stellar Models215

19.3 Properties of the Solutions216

19.4 Application to Stars218

19.5 Radiation Pressure and the Polytrope n=3219

19.6 Polytropic Stellar Models with Fixed K220

19.7 Chandrasekhar's Limiting Mass221

19.8 Isothermal Spheres of an Ideal Gas222

19.9 Gravitational and Total Energy for Polytropes224

19.10 Supermassive Stars226

19.11 A Collapsing Polytrope227

20 Homology Relations233

20.1 Definitions and Basic Relations233

20.2 Applications to Simple Material Functions237

20.2.1 The Caseδ=0237

20.2.2 The Caseα=δ=ψ=1,a=b=0237

20.2.3 The Role of the Equation of State239

20.3 Homologous Contraction241

21 Simple Models in the U-V Plane243

21.1 The U-V Plane243

21.2 Radiative Envelope Solutions246

21.3 Fitting of a Convective Core248

21.4 Fitting of an Isothermal Core250

22 The Zero-Age Main Sequence251

22.1 Surface Values251

22.2 Interior Solutions254

22.3 Convective Regions258

22.4 Extreme Values of M260

22.5 The Eddington Luminosity261

23 Other Main Sequences263

23.1 The Helium Main Sequence263

23.2 The Carbon Main Sequence266

23.3 Generalized Main Sequences267

24 The Hayashi Line271

24.1 Luminosity of Fully Convective Models272

24.2 A Simple Description of the Hayashi Line273

24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region276

24.4 Numerical Results279

24.5 Limitations for Fully Convective Models281

25 Stability Considerations283

25.1 General Remarks283

25.2 Stability of the Piston Model285

25.2.1 Dynamical Stability285

25.2.2 Inclusion of Non-adiabatic Effects286

25.3 Stellar Stability288

25.3.1 Perturbation Equations289

25.3.2 Dynamical Stability290

25.3.3 Non-adiabatic Effects292

25.3.4 The Gravothermal Specific Heat293

25.3.5 Secular Stability Behaviour of Nuclear Burning294

Part Ⅴ Early Stellar Evolution299

26 The Onset of Star Formation299

26.1 The Jeans Criterion299

26.1.1 An Infinite Homogeneous Medium299

26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium302

26.2 Instabilityin the Spherical Case303

26.3 Fragmentation307

27 The Formation of Protostars311

27.1 Free-Fall Collapse of a Homogeneous Sphere311

27.2 Collapse onto a Condensed Object313

27.3 A Collapse Calculation314

27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core315

27.5 Core Collapse317

27.6 Evolution in the Hertzsprung-Russell Diagram320

28 Pre-Main-Sequence Contraction323

28.1 Homologous Contraction of a Gaseous Sphere323

28.2 Approach to the Zero-Age Main Sequence326

29 From the Initial to the Present Sun329

29.1 Known Solar Data329

29.2 Choosing the Initial Model331

29.3 A Standard Solar Model333

29.4 Results of Helioseismology336

29.5 Solar Neutrinos338

30 Evolution on the Main Sequence343

30.1 Change in the Hydrogen Content343

30.2 Evolution in the Hertzsprung-Russell Diagram346

30.3 Timescales for Central Hydrogen Burning347

30.4 Complications Connected with Convection348

30.4.1 Convective Overshooting349

30.4.2 Semiconvection354

30.5 The Sch?nberg-Chandrasekhar Limit356

30.5.1 A Simple Approach:The Virial Theorem and Homology358

30.5.2 Integrations for Core and Envelope360

30.5.3 Complete Solutions for Stars with Isothermal Cores361

Part Ⅵ Post-Main-Sequence Evolution367

31 Evolution Through Helium Burning:Intermediate-Mass Stars367

31-1 Crossing the Hertzsprung Gap367

31.2 Central Helium Burning371

31.3 The Cepheid Phase375

31.4 To Loop or Not to Loop378

31.5 After Central Helium Burning384

32 Evolution Through Helium Burning:Massive Stars385

32.1 Semiconvection385

32.2 Overshooting387

32.3 Mass Loss389

33 Evolution Through Helium Burning:Low-Mass Stars391

33.1 Post-Main-Sequence Evolution391

33.2 Shell-Source Homology392

33.3 Evolution Along the Red Giant Branch397

33.4 The Helium Flash401

33.5 Numerical Results for the Helium Flash402

33.6 Evolution After the Helium Flash407

33.7 Evolution from the Zero-Age Horizontal Branch410

Part Ⅶ Late Phases of Stellar Evolution417

34 Evolution on the Asymptotic Giant Branch417

34.1 Nuclear Shells on the Asymptotic Giant Branch417

34.2 Shell Sources and Their Stability419

34.3 Thermal Pulses of a Shell Source422

34.4 The Core-Mass-Luminosity Relation for Large Core Masses424

34.5 Nucleosynthesis on the AGB426

34.6 Mass Loss on the AGB430

34.7 A Sample AGB Evolution433

34.8 Super-AGB Stars436

34.9 Post-AGB Evolution438

35 Later Phases of Core Evolution439

35.1 Nuclear Cycles439

35.2 Evolution of the Central Region441

36 Final Explosions and Collapse449

36.1 The Evolution of the CO-Core450

36.2 Carbon Ignition in Degenerate Cores454

36.2.1 The Carbon Flash454

36.2.2 Nuclear Statistical Equilibrium455

36.2.3 Hydrostatic and Convective Adjustment458

36.2.4 Combustion Fronts459

36.2.5 Carbon Burning in Accreting White Dwarfs461

36.3 Collapse of Cores of Massive Stars461

36.3.1 Simple Collapse Solutions462

36.3.2 The Reflection of the Infall465

36.3.3 Effects of Neutrinos466

36.3.4 Electron-Capture Supernovae469

36.3.5 Pair-Creation Instability469

36.4 The Supernova-Gamma-Ray-Burst Connection471

Part Ⅷ Compact Objects475

37 White Dwarfs475

37.1 Chandrasekhar's Theory475

37.2 The Corrected Mechanical Structure479

37.2.1 Crystallization480

37.2.2 Pycnonuclear Reactions482

37.2.3 Inverse β Decays483

37.2.4 Nuclear Equilibrium483

37.3 Thermal Properties and Evolution of White Dwarfs487

38 Neutron Stars497

38.1 Cold Matter Beyond Neutron Drip497

38.2 Models of Neutron Stars501

39 Black Holes509

Part Ⅸ Pulsating Stars519

40 Adiabatic Spherical Pulsations519

40.1 The Eigenvalue Problem519

40.2 The Homogeneous Sphere523

40.3 Pulsating Polytropes525

41 Non-adiabatic Spherical Pulsations529

41.1 Vibrational Instability of the Piston Model529

41.2 The Quasi-adiabatic Approximation531

41.3 The Energy Integral532

41.3.1 The к Mechanism534

41.3.2 The ε Mechanism534

41.4 Stars Driven by the к Mechanism:The Instability Strip535

41.5 Stars Driven by the ε Mechanism541

42 Non-radial Stellar Oscillations543

42.1 Perturbations of the Equilibrium Model543

42.2 Normal Modes and Dimensionless Variables545

42.3 The Eigenspectra548

42.4 Stars Showing Non-radial Oscillations552

Part Ⅹ Stellar Rotation557

43 The Mechanics of Rotating Stellar Models557

43.1 Uniformly Rotating Liquid Bodies557

43.2 The Roche Model560

43.3 Slowly Rotating Polytropes562

44 The Thermodynamics of Rotating Stellar Models565

44.1 Conservative Rotation565

44.2 Von Zeipel'sT heorem566

44.3 Meridional Circulation567

44.4 The Non-conservative Case569

44.5 The Eddington-Sweet Timescale570

44.6 Meridional Circulation in Inhomogeneous Stars573

45 The Angular-Velocity Distribution in Stars575

45.1 Viscosity575

45.2 Dynamical Stability577

45.3 Secular Stability582

References587

Index595

热门推荐