图书介绍
恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (法)雅克·朗西埃著 著
- 出版社:
- ISBN:
- 出版时间:2014
- 标注页数:0页
- 文件大小:95MB
- 文件页数:622页
- 主题词:
PDF下载
下载说明
恒星结构与演化 第2版=STELLAR STRUCTURE AND EVOLUTION 2ND EDITION 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Part Ⅰ The Basic Equations3
1 Coordinates,Mass Distribution,and Gravitational Field in Spherical Stars3
1.1 Eulerian Description3
1.2 Lagrangian Description4
1.3 The Gravitational Field6
2 Conservation of Momentum9
2.1 Hydrostatic Equilibrium9
2.2 The Role of Density and Simple Solutions10
2.3 Simple Estimates of Central Values Pc,Tc12
2.4 The Equation of Motion for Spherical Symmetry13
2.5 The Non-spherical Case15
2.6 Hydrostatic Equilibrium in General Relativity15
2.7 The Piston Model17
3 The Virial Theorem19
3.1 Stars in Hydrostatic Equilibrium19
3.2 The Virial Theorem of the Piston Model21
3.3 The Kelvin-Helrnholtz Timescale22
3.4 The Virial Theorem for Non-vanishing Surface Pressure23
4 Conservation of Energy25
4.1 Thermodynamic Relations25
4.2 The Perfect Gas and the Mean Molecular Weight28
4.3 Thermodynamic Quantities for the Perfect,Monatomic Gas30
4.4 Energy Conservation in Stars31
4.5 Global and Local Energy Conservation33
4.6 Timescales35
5 Transport of Energy by Radiation and Conduction37
5.1 Radiative Transport of Energy37
5.1.1 Basic Estimates37
5.1.2 Diffusion of Radiative Energy38
5.1.3 The Rosseland Mean for Kv40
5.2 Conductive Transport of Energy42
5.3 The Thermal Adjustment Time of a Star43
5.4 Thermal Properties of the Piston Model45
6 Stability Against Local,Non-spherical Perturbations47
6.1 Dynamical Instability47
6.2 Oscillation of a Displaced Element52
6.3 Vibrational Stability54
6.4 The Thermal Adiustment Time55
6.5 Secular Instability56
6.6 The Stability of the Piston Model58
7 Transport of Energy by Convection61
7.1 The Basic Picture62
7.2 Dimensionless Equations65
7.3 Limiting Cases,Solutions,Discussion66
7.4 Extensions of the Mixing-Length Theory70
8 The Chemical Composition73
8.1 Relative Mass Abundances73
8.2 Variation of Composition with Time74
8.2.1 Radiative Regions74
8.2.2 Diffusion76
8.2.3 Convective Regions80
9 Mass Loss83
Part Ⅱ The Overall Problem89
10 The Differential Equations of Stellar Evolution89
10.1 The Full Set of Equations89
10.2 Timescales and Simplifications91
11 Boundary Conditions93
11.1 Central Conditions93
11.2 Surface Conditions95
11.3 Influence of the Surface Conditions and Properties of Envelope Solutions98
11.3.1 Radiative Envelopes98
11.3.2 Convective Envelopes101
11.3.3 Summary102
11.3.4 The T-r Stratification102
12 Numerical Procedure105
12.1 The Shooting Method105
12.2 The Henyey Method106
12.3 Treatment of the First-and Second-Order Time Derivatives113
12.4 Treatment of the Diffusion Equation115
12.5 Treatment of Mass Loss117
12.6 Existence and Uniqueness118
Part Ⅲ Properties of Stellar Matter123
13 The Perfect Gas with Radiation123
13.1 Radiation Pressure123
13.2 Thermodynamic Quantities124
14 Ionization127
14.1 The Boltzmann and Saha Formulae127
14.2 Ionization of Hydrogen130
14.3 Thermodynamical Quantities for a Pure Hydrogen Gas132
14.4 Hydrogen-Helium Mixtures133
14.5 The General Case135
14.6 Limitation of the Saha Formula137
15 The Degenerate Electron Gas139
15.1 Consequences of the Pauli Principle139
15.2 The Completely Degenerate Electron Gas140
15.3 Limiting Cases144
15.4 Partial Degeneracy of the Electron Gas145
16 The Equation of State of Stellar Matter151
16.1 The Ion Gas151
16.2 The Equation of State152
16.3 Thermodynamic Quantities154
16.4 Crystallization157
16.5 Neutronization158
16.6 Real Gas Effects159
17 Opacity163
17.1 Electron Scattering163
17.2 Absorption Due to Free-Free Transitions164
17.3 Bound-Free Transitions165
17.4 Bound-Bound Transitions166
17.5 The Negative Hydrogen Ion168
17.6 Conduction169
17.7 Molecular Opacities170
17.8 Opacity Tables172
18 Nuclear Energy Production175
18.1 Basic Considerations175
18.2 Nuclear Cross Sections179
18.3 Thermonuclear Reaction Rates182
18.4 Electron Shielding188
18.5 The Major Nuclear Burning Stages192
18.5.1 Hydrogen Burning193
18.5.2 Helium Burning197
18.5.3 Carbon Burning and Beyond199
18.6 Neutron-Capture Nucleosynthesis201
18.7 Neutrinos205
Part Ⅳ Simple Stellar Models213
19 Polytropic Gaseous Spheres213
19.1 Polytropic Relations213
19.2 Polytropic Stellar Models215
19.3 Properties of the Solutions216
19.4 Application to Stars218
19.5 Radiation Pressure and the Polytrope n=3219
19.6 Polytropic Stellar Models with Fixed K220
19.7 Chandrasekhar's Limiting Mass221
19.8 Isothermal Spheres of an Ideal Gas222
19.9 Gravitational and Total Energy for Polytropes224
19.10 Supermassive Stars226
19.11 A Collapsing Polytrope227
20 Homology Relations233
20.1 Definitions and Basic Relations233
20.2 Applications to Simple Material Functions237
20.2.1 The Caseδ=0237
20.2.2 The Caseα=δ=ψ=1,a=b=0237
20.2.3 The Role of the Equation of State239
20.3 Homologous Contraction241
21 Simple Models in the U-V Plane243
21.1 The U-V Plane243
21.2 Radiative Envelope Solutions246
21.3 Fitting of a Convective Core248
21.4 Fitting of an Isothermal Core250
22 The Zero-Age Main Sequence251
22.1 Surface Values251
22.2 Interior Solutions254
22.3 Convective Regions258
22.4 Extreme Values of M260
22.5 The Eddington Luminosity261
23 Other Main Sequences263
23.1 The Helium Main Sequence263
23.2 The Carbon Main Sequence266
23.3 Generalized Main Sequences267
24 The Hayashi Line271
24.1 Luminosity of Fully Convective Models272
24.2 A Simple Description of the Hayashi Line273
24.3 The Neighbourhood of the Hayashi Line and the Forbidden Region276
24.4 Numerical Results279
24.5 Limitations for Fully Convective Models281
25 Stability Considerations283
25.1 General Remarks283
25.2 Stability of the Piston Model285
25.2.1 Dynamical Stability285
25.2.2 Inclusion of Non-adiabatic Effects286
25.3 Stellar Stability288
25.3.1 Perturbation Equations289
25.3.2 Dynamical Stability290
25.3.3 Non-adiabatic Effects292
25.3.4 The Gravothermal Specific Heat293
25.3.5 Secular Stability Behaviour of Nuclear Burning294
Part Ⅴ Early Stellar Evolution299
26 The Onset of Star Formation299
26.1 The Jeans Criterion299
26.1.1 An Infinite Homogeneous Medium299
26.1.2 A Plane-Parallel Layer in Hydrostatic Equilibrium302
26.2 Instabilityin the Spherical Case303
26.3 Fragmentation307
27 The Formation of Protostars311
27.1 Free-Fall Collapse of a Homogeneous Sphere311
27.2 Collapse onto a Condensed Object313
27.3 A Collapse Calculation314
27.4 The Optically Thin Phase and the Formation of a Hydrostatic Core315
27.5 Core Collapse317
27.6 Evolution in the Hertzsprung-Russell Diagram320
28 Pre-Main-Sequence Contraction323
28.1 Homologous Contraction of a Gaseous Sphere323
28.2 Approach to the Zero-Age Main Sequence326
29 From the Initial to the Present Sun329
29.1 Known Solar Data329
29.2 Choosing the Initial Model331
29.3 A Standard Solar Model333
29.4 Results of Helioseismology336
29.5 Solar Neutrinos338
30 Evolution on the Main Sequence343
30.1 Change in the Hydrogen Content343
30.2 Evolution in the Hertzsprung-Russell Diagram346
30.3 Timescales for Central Hydrogen Burning347
30.4 Complications Connected with Convection348
30.4.1 Convective Overshooting349
30.4.2 Semiconvection354
30.5 The Sch?nberg-Chandrasekhar Limit356
30.5.1 A Simple Approach:The Virial Theorem and Homology358
30.5.2 Integrations for Core and Envelope360
30.5.3 Complete Solutions for Stars with Isothermal Cores361
Part Ⅵ Post-Main-Sequence Evolution367
31 Evolution Through Helium Burning:Intermediate-Mass Stars367
31-1 Crossing the Hertzsprung Gap367
31.2 Central Helium Burning371
31.3 The Cepheid Phase375
31.4 To Loop or Not to Loop378
31.5 After Central Helium Burning384
32 Evolution Through Helium Burning:Massive Stars385
32.1 Semiconvection385
32.2 Overshooting387
32.3 Mass Loss389
33 Evolution Through Helium Burning:Low-Mass Stars391
33.1 Post-Main-Sequence Evolution391
33.2 Shell-Source Homology392
33.3 Evolution Along the Red Giant Branch397
33.4 The Helium Flash401
33.5 Numerical Results for the Helium Flash402
33.6 Evolution After the Helium Flash407
33.7 Evolution from the Zero-Age Horizontal Branch410
Part Ⅶ Late Phases of Stellar Evolution417
34 Evolution on the Asymptotic Giant Branch417
34.1 Nuclear Shells on the Asymptotic Giant Branch417
34.2 Shell Sources and Their Stability419
34.3 Thermal Pulses of a Shell Source422
34.4 The Core-Mass-Luminosity Relation for Large Core Masses424
34.5 Nucleosynthesis on the AGB426
34.6 Mass Loss on the AGB430
34.7 A Sample AGB Evolution433
34.8 Super-AGB Stars436
34.9 Post-AGB Evolution438
35 Later Phases of Core Evolution439
35.1 Nuclear Cycles439
35.2 Evolution of the Central Region441
36 Final Explosions and Collapse449
36.1 The Evolution of the CO-Core450
36.2 Carbon Ignition in Degenerate Cores454
36.2.1 The Carbon Flash454
36.2.2 Nuclear Statistical Equilibrium455
36.2.3 Hydrostatic and Convective Adjustment458
36.2.4 Combustion Fronts459
36.2.5 Carbon Burning in Accreting White Dwarfs461
36.3 Collapse of Cores of Massive Stars461
36.3.1 Simple Collapse Solutions462
36.3.2 The Reflection of the Infall465
36.3.3 Effects of Neutrinos466
36.3.4 Electron-Capture Supernovae469
36.3.5 Pair-Creation Instability469
36.4 The Supernova-Gamma-Ray-Burst Connection471
Part Ⅷ Compact Objects475
37 White Dwarfs475
37.1 Chandrasekhar's Theory475
37.2 The Corrected Mechanical Structure479
37.2.1 Crystallization480
37.2.2 Pycnonuclear Reactions482
37.2.3 Inverse β Decays483
37.2.4 Nuclear Equilibrium483
37.3 Thermal Properties and Evolution of White Dwarfs487
38 Neutron Stars497
38.1 Cold Matter Beyond Neutron Drip497
38.2 Models of Neutron Stars501
39 Black Holes509
Part Ⅸ Pulsating Stars519
40 Adiabatic Spherical Pulsations519
40.1 The Eigenvalue Problem519
40.2 The Homogeneous Sphere523
40.3 Pulsating Polytropes525
41 Non-adiabatic Spherical Pulsations529
41.1 Vibrational Instability of the Piston Model529
41.2 The Quasi-adiabatic Approximation531
41.3 The Energy Integral532
41.3.1 The к Mechanism534
41.3.2 The ε Mechanism534
41.4 Stars Driven by the к Mechanism:The Instability Strip535
41.5 Stars Driven by the ε Mechanism541
42 Non-radial Stellar Oscillations543
42.1 Perturbations of the Equilibrium Model543
42.2 Normal Modes and Dimensionless Variables545
42.3 The Eigenspectra548
42.4 Stars Showing Non-radial Oscillations552
Part Ⅹ Stellar Rotation557
43 The Mechanics of Rotating Stellar Models557
43.1 Uniformly Rotating Liquid Bodies557
43.2 The Roche Model560
43.3 Slowly Rotating Polytropes562
44 The Thermodynamics of Rotating Stellar Models565
44.1 Conservative Rotation565
44.2 Von Zeipel'sT heorem566
44.3 Meridional Circulation567
44.4 The Non-conservative Case569
44.5 The Eddington-Sweet Timescale570
44.6 Meridional Circulation in Inhomogeneous Stars573
45 The Angular-Velocity Distribution in Stars575
45.1 Viscosity575
45.2 Dynamical Stability577
45.3 Secular Stability582
References587
Index595