图书介绍

数学分析 上PDF|Epub|txt|kindle电子书版本网盘下载

数学分析 上
  • 朱永庚等编 著
  • 出版社: 西安:陕西师范大学出版社
  • ISBN:7561302304
  • 出版时间:1989
  • 标注页数:314页
  • 文件大小:7MB
  • 文件页数:327页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数学分析 上PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

目录第一章 引论1

§1.直积映射量词1

一、直积(2)二、映射(2)三、量词3

习题1.13

§2.实数概述4

习题1.27

§3.数直线区间不等式邻域7

一、数直线(7)二、区间(8)三、绝对值与不等式(9)四、邻域(10)习题1.312

§4.确界存在定理12

习题1.415

第二章函数16

§1.函数的概念16

习题2.120

§2.函数的几何性质21

一、有界性(21)二、单调性(22)三、奇偶性23

四、周期性(24)习题2.225

§3.函数的运算延拓和限制26

一、四则运算(26)二、复合函数27

三、反函数(29)四、函数的延拓与限制30

习题2.331

§4.初等函数32

一、幂函数(33)二、指数函数(33)三、对数函数(34)四、三角函数(34)五、反三角函数35

习题2.437

第三章数列极限38

§1.数列极限的概念38

习题3.142

§2.数列极限的性质43

一、一般性质(43)二、不等式(44)三、四则运算45

习题3.250

§3.数列极限存在的两个判别准则51

一、单调有界定理(51)二、柯西准则53

习题3.356

§4.实数连续统的基本定理57

一、区间套定理(57)二、有限覆盖定理58

三、聚点定理(60)习题3.461

§5.波尔查诺——魏尔斯特拉斯定理62

习题3.563

第四章函数极限64

§1.函数极限的定义64

习题4.167

§2.函数极限的性质67

习题4.270

§3.其它类型的极限71

一、单侧极限(71)二、函数在无穷远点处的极限73

习题4.374

§4.汉奈归结原理与柯西准则75

一、归结原理(75)二、柯西准则(77)习题4.478

§5.无穷小量与无穷大量79

习题4.581

§6.两个重要极限82

一、?sinx/x=1(82) 二、?(1+1/x)x=e(84)习题4.685

第五章连续函数87

§1.函数连续的概念87

习题5.190

§2.间断点及其分类91

习题5.296

§3.连续函数的运算初等函数的连续性97

一、四则运算(97)二、复合函数的连续性97

三、反函数的连续性(98)习题5.3101

§4.无穷小量与无穷大量的阶101

习题5.4106

§5.连续函数的性质107

一、局部性质(107)二、整体性质——闭区间上连续函数的基本性质(107)习题5.5114

第六章导数和微分115

§1.导数的概念115

一、两类问题(115)二、导数的定义(116)三、可导与连续的关系(119)习题6.1120

§2.导数的运算121

一、四则运算(121)二、复合函数的求导法则124

§3.初等函数的导数126

三、反函数的导数(125)四、对数求导法126

一、对数函数的导数(126)二、指数函数的导数127

三、幂函数的导数(127)四、三角函数的导数128

五、反三角函数的导数(128)习题6.3130

§4.微分131

一、微分的概念(131)二、微分的运算性质及一阶微分形式的不变性(134)三、由方程或方程组确定的函数的求导方法(135)习题6.4138

§5.高阶导数与高阶微分139

一、高阶导数(139)二、高阶微分(142)习题6.5143

§6.微分在近似计算中的应用144

习题6.6145

第七章微分中值定理及其应用147

§1.微分中值定理147

一、费尔马定理(147)二、罗尔定理(149)三、拉格朗日中值定理(150)四、柯西中值定理(153)五、泰勒定理(154)习题7.1159

§2.不定式的极限161

§3.利用导数研究函数167

习题7.2167

一、函数的单调性(167)二、函数极值的判定170

三、函数的最大值与最小值(173)四、函数的凸性与拐点(175)五、渐近线(180)习题7.3182

§4、函数作图183

习题7.4185

第八章不定积分186

§1.原函数与不定积分186

一、原函数(186)二、不定积分(187)习题8.1189

§2.直接积分法189

一、基本积分表(189)二、简单积分法(线性运算法)(190)习题8.2192

§3.换元积分法193

习题8.3199

§4.分部积分法200

习题8.4204

§5.有理函数的不定积分204

§6.三角函数有理式、简单无理函数的不定积分209

一、三角函数有理式R(sinx,cosx)的积分209

习题8.5209

二、R(x,?)型的积分(212)三、R(x,?)型的积分(213)习题8.6215

第九章定积分217

§1.定积分的概念217

一、问题引入(217)二、定积分的定义219

习题9.1223

§2.可积条件224

一、大和小和(225)二、可积条件(228)三、可积函数类(231)习题9.2234

§3.定积分的性质235

习题9.3244

§4.微积分学基本定理245

一、变限积分(246)二、微积分学基本定理247

习题9.4251

§5.定积分的计算253

一、直接积分法(253)二、换元积分法(254)三、分部积分法(257)习题9.5259

第十章定积分的应用262

§1.平面图形的面积262

一、直角坐标方程(262)二、参数方程(264)三、极坐标方程(266)习题10.1267

§2.平面曲线的弧长268

一、可求长曲线(268)二、弧长的计算、弧长的微分(269)习题10.2274

§3.立体体积275

一、定积分应用大意(275)二、利用截面面积计算体积(276)三、旋转体的体积(278)习题10.3281

§4.物理上的某些应用281

一、平面薄板的质心(281)二、变力作功283

习题10.4284

一、实数的定义原则286

附录Ⅰ 实数理论概要286

二、实数的定义(288) 三、实数的序291

四、实数集R是有序域292

五、实数域中元素满足Archimedes公理293

六、实数的连续性293

附录Ⅱ 上下极限296

一、数列的聚点296

二、数列的上下限297

习题答案 (300—314

热门推荐