图书介绍
Microwave engineering = 微波工程 (英文版) (第三版)PDF|Epub|txt|kindle电子书版本网盘下载
![Microwave engineering = 微波工程 (英文版) (第三版)](https://www.shukui.net/cover/17/32007643.jpg)
- David M. Pozar 著
- 出版社: Publishing House of Electronics Industry
- ISBN:7121031698
- 出版时间:2006
- 标注页数:616页
- 文件大小:88MB
- 文件页数:635页
- 主题词:微波技术-教材-英文
PDF下载
下载说明
Microwave engineering = 微波工程 (英文版) (第三版)PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 ELECTROMAGNETIC THEORY1
1.1 Introduction to Microwave Engineering1
Applications of Microwave Engineering2
A Short History of Microwave Engineering3
1.2 Maxwell’s Equations5
1.3 Fields in Media and Boundary Conditions9
Fields at a General Material Interface11
Fields at a Dielectric Interface13
Fields at the Interface with a Perfect Conductor (Electric Wall)13
The Magnetic Wall Boundary Condition14
The Radiation Condition14
1.4 The Wave Equation and Basic Plane Wave Solutions14
The Helmholtz Equation14
Plane Waves in a Lossless Medium15
Plane Waves in a General Lossy Medium16
Plane Waves in a Good Conductor18
1.5 General Plane Wave Solutions19
Circularly Polarized Plane Waves23
1.6 Energy and Power24
Power Absorbed by a Good Conductor26
1.7 Plane Wave Reflection from a Media Interface27
General Medium28
Lossless Medium29
Good Conductor30
Perfect Conductor32
The Surface Impedance Concept32
1.8 Oblique Incidence at a Dielectric Interface34
Parallel Polarization35
Perpendicular Polarization36
Total Reflection and Surface Waves38
1.9 Some Useful Theorems40
The Reciprocity Theorem40
Image Theory42
2 TRANSMISSION LINE THEORY49
2.1 The Lumped-Element Circuit Model for a Transmission Line49
Wave Propagation on a Transmission Line51
The Lossless Line52
2.2 Field Analysis of Transmission Lines52
Transmission Line Parameters52
The Telegrapher Equations Derived from Field Analysis of a Coaxial Line55
Propagation Constant,Impedance,and Power Flow for the Lossless Coaxial Line57
2.3 The Terminated Lossless Transmission Line57
Special Cases of Lossless Terminated Lines60
2.4 The Smith Chart64
The Combined Impedance-Admittance Smith Chart68
The Slotted Line69
2.5 The Quarter-Wave Transformer73
The Impedance Viewpoint73
The Multiple Reflection Viewpoint75
2.6 Generator and Load Mismatches77
Load Matched to Line78
Generator Matched to Loaded Line78
Conjugate Matching78
2.7 Lossy Transmission Lines79
The Low-Loss Line79
The Distortionless Line81
The Terminated Lossy Line82
The Perturbation Method for Calculating Attenuation83
The Wheeler Incremental Inductance Rule84
3 TRANSMISSION LINES AND WAVEGUIDES91
3.1 General Solutions for TEM,TE,and TM Waves92
TEM Waves94
TE Waves96
TM Waves96
Attenuation Due to Dielectric Loss97
3.2 Parallel Plate Waveguide98
TEM Modes99
TM Modes100
TE Modes103
3.3 Rectangular Waveguide106
TE Modes106
TM Modes111
TEm0 Modes of a Partially Loaded Waveguide115
3.4 Circular Waveguide117
TE Modes118
TM Modes121
3.5 Coaxial Line126
TEM Modes126
Higher Order Modes127
3.6 Surface Waves on a Grounded Dielectric Slab131
TM Modes131
TE Modes134
3.7 Stripline137
Formulas for Propagation Constant,Characteristic Impedance,and Attenuation138
An Approximate Electrostatic Solution140
3.8 Microstrip143
Formulas for Effective Dielectric Constant,Characteristic Impedance,and Attenuation144
An Approximate Electrostatic Solution146
3.9 The Transverse Resonance Technique149
TE0n Modes of a Partially Loaded Rectangular Waveguide150
3.10 Wave Velocities and Dispersion151
Group Velocity151
3.11 Summary of Transmission Lines and Waveguides154
Other Types of Lines and Guides154
4 MICROWAVE NETWORK ANALYSIS161
4.1 Impedance and Equivalent Voltages and Currents162
Equivalent Voltages and Currents162
The Concept of Impedance166
Even and Odd Properties of Z(ω) and Γ(ω)169
4.2 Impedance and Admittance Matrices170
Reciprocal Networks171
Lossless Networks173
4.3 The Scattering Matrix174
Reciprocal Networks and Lossless Networks177
A Shift in Reference Planes180
Generalized Scattering Parameters181
4.4 The Transmission (ABCD) Matrix183
Relation to Impedance Matrix185
Equivalent Circuits for Two-Port Networks186
4.5 Signal Flow Graphs189
Decomposition of Signal Flow Graphs190
Application to TRL Network Analyzer Calibration193
4.6 Discontinuities and Modal Analysis197
Modal Analysis of an H-Plane Step in Rectangular Waveguide199
4.7 Excitation of Waveguides—Electric and Magnetic Currents204
Current Sheets That Excite Only One Waveguide Mode204
Mode Excitation from an Arbitrary Electric or Magnetic Current Source206
4.8 Excitation of Waveguides—Aperture Coupling209
Coupling Through an Aperture in a Transverse Waveguide Wall212
Coupling Through an Aperture in the Broad Wall of a Waveguide214
5 IMPEDANCE MATCHING AND TUNING222
5.1 Matching with Lumped Elements (L Networks)223
Analytic Solutions224
Smith Chart Solutions225
5.2 Single-Stub Tuning228
Shunt Stubs228
Series Stubs232
5.3 Double-Stub Tuning235
Smith Chart Solution235
Analytic Solution238
5.4 The Quarter-Wave Transformer240
5.5 The Theory of Small Reflections244
Single-Section Transformer244
Multisection Transformer245
5.6 Binomial Multisection Matching Transformers246
5.7 Chebyshev Multisection Matching Transformers250
Chebyshev Polynomials251
Design of Chebyshev Transformers252
5.8 Tapered Lines255
Exponential Taper257
Triangular Taper258
Klopfenstein Taper258
5.9 The Bode-Fano Criterion261
6 MICROWAVE RESONATORS266
6.1 Series and Parallel Resonant Circuits266
Series Resonant Circuit266
Parallel Resonant Circuit269
Loaded and Unloaded Q271
6.2 Transmission Line Resonators272
Short-Circuited λ /2 Line272
Short-Circuited λ/4 Line275
Open-Circuited λ/2 Line276
6.3 Rectangular Waveguide Cavities278
Resonant Frequencies278
Q of the TE10e Mode279
6.4 Circular Waveguide Cavities282
Resonant Frequencies282
Q of the TEnm e Mode284
6.5 Dielectric Resonators287
Resonant Frequencies of TE01δ Mode287
6.6 Excitation of Resonators291
Critical Coupling291
A Gap-Coupled Microstrip Resonator292
An Aperture-Coupled Cavity296
6.7 Cavity Perturbations298
Material Perturbations298
Shape Perturbations300
7 POWER DIVIDERS AND DIRECTIONAL COUPLERS308
7.1 Basic Properties of Dividers and Couplers308
Three-Port Networks (T- Junctions)309
Four-Port Networks (Directional Couplers)311
7.2 The T -Junction Power Divider315
Lossless Divider316
Resistive Divider317
7.3 The Wilkinson Power Divider318
Even-Odd Mode Analysis319
Unequal Power Division and N-Way Wilkinson Dividers322
7.4 Waveguide Directional Couplers323
Bethe Hole Coupler324
Design of Multihole Couplers327
7.5 The Quadrature (90°) Hybrid333
Even-Odd Mode Analysis333
7.6 Coupled Line Directional Couplers337
Coupled Line Theory337
Design of Coupled Line Couplers341
Design of Multisection Coupled Line Couplers345
7.7 The Lange Coupler349
7.8 The 180° Hybrid352
Even-Odd Mode Analysis of the Ring Hybrid354
Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid357
Waveguide Magic-T361
7.9 Other Couplers361
8 MICROWAVE FILTERS370
8.1 Periodic Structures371
Analysis of Infinite Periodic Structures372
Terminated Periodic Structures374
k-β Diagrams and Wave Velocities375
8.2 Filter Design by the Image Parameter Method378
Image Impedances and Transfer Functions for Two-Port Networks378
Constant-k Filter Sections380
m-Derived Filter Sections383
Composite Filters386
8.3 Filter Design by the Insertion Loss Method389
Characterization by Power Loss Ratio389
Maximally Flat Low-Pass Filter Prototype392
Equal-Ripple Low-Pass Filter Prototype394
Linear Phase Low-Pass Filter Prototypes396
8.4 Filter Transformations398
Impedance and Frequency Scaling398
Bandpass and Bandstop Transformations401
8.5 Filter Implementation405
Richard’s Transformation406
Kuroda’s Identities406
Impedance and Admittance Inverters411
8.6 Stepped-Impedance Low-Pass Filters412
Approximate Equivalent Circuits for Short Transmission Line Sections412
8.7 Coupled Line Filters416
Filter Properties of a Coupled Line Section416
Design of Coupled Line Bandpass Filters420
8.8 Filters Using Coupled Resonators427
Bandstop and Bandpass Filters Using Quarter-Wave Resonators427
Bandpass Filters Using Capacitively Coupled Series Resonators431
Bandpass Filters Using Capacitively Coupled Shunt Resonators433
9 NOISE AND ACTIVE RF COMPONENTS441
9.1 Noise in Microwave Circuits442
Dynamic Range and Sources of Noise442
Noise Power and Equivalent Noise Temperature444
Measurement of Noise Temperature447
Noise Figure448
Noise Figure of a Cascaded System450
Noise Figure of a Passive Two-Port Network452
Noise Figure of a Mismatched Lossy Line453
9.2 Dynamic Range and Intermodulation Distortion455
Gain Compression456
Intermodulation Distortion457
Third-Order Intercept Point459
Dynamic Range460
Intercept Point of a Cascaded System462
Passive Intermodulation464
9.3 RF Diode Characteristics464
Schottky Diodes and Detectors464
PIN Diodes and Control Circuits469
Varactor Diodes475
Other Diodes476
9.4 RF Transistor Characteristics477
Field Effect Transistors (FETs)478
Bipolar Junction Transistors (BJTs)480
9.5 Microwave Integrated Circuits481
Hybrid Microwave Integrated Circuits482
Monolithic Microwave Integrated Circuits483
10 MICROWAVE AMPLIFIER DESIGN491
10.1 Two-Port Power Gains491
Definitions of Two-Port Power Gains492
Further Discussion of Two-Port Power Gains495
10.2 Stability497
Stability Circles498
Tests for Unconditional Stability500
10.3 Single-Stage Transistor Amplifier Design503
Design for Maximum Gain (Conjugate Matching)503
Constant Gain Circles and Design for Specified Gain508
Low-Noise Amplifier Design512
10.4 Broadband Transistor Amplifier Design516
Balanced Amplifiers517
Distributed Amplifiers520
10.5 Power Amplifiers525
Characteristics of Power Amplifiers and Amplifier Classes525
Large-Signal Characterization of Transistors526
Design of Class A Power Amplifiers527
11 OSCILLATORS AND MIXERS532
11.1 RF Oscillators533
General Analysis533
Oscillators Using a Common Emitter BJT534
Oscillators Using a Common Gate FET536
Practical Considerations537
Crystal Oscillators539
11.2 Microwave Oscillators540
Transistor Oscillators542
Dielectric Resonator Oscillators545
11.3 Oscillator Phase Noise549
Representation of Phase Noise549
Leeson’s Model for Oscillator Phase Noise550
11.4 Frequency Multipliers554
Reactive Diode Multipliers (Manley-Rowe Relations)555
Resistive Diode Multipliers557
Transistor Multipliers559
11.5 Overview of Microwave Sources563
Solid-State Sources564
Microwave Tubes567
11.6 Mixers570
Mixer Characteristics571
Single-Ended Diode Mixer575
Single-Ended FET Mixer577
Balanced Mixer580
Image Reject Mixer582
Other Mixers584
APPENDICES588
A Prefixes589
B Vector Analysis589
C Bessel Functions591
D Other Mathematical Results594
E Physical Constants594
F Conductivities for Some Materials595
G Dielectric Constants and Loss Tangents for Some Materials595
H Properties of Some Microwave Ferrite Materials596
I Standard Rectangular Waveguide Data596
J Standard Coaxial Cable Data597
ANSWERS TO SELECTED PROBLEMS598
USEFUL RESULTS600
VECTOR ANALYSIS602
INDEX604