图书介绍

Microwave engineering = 微波工程 (英文版) (第三版)PDF|Epub|txt|kindle电子书版本网盘下载

Microwave engineering = 微波工程 (英文版) (第三版)
  • David M. Pozar 著
  • 出版社: Publishing House of Electronics Industry
  • ISBN:7121031698
  • 出版时间:2006
  • 标注页数:616页
  • 文件大小:88MB
  • 文件页数:635页
  • 主题词:微波技术-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

Microwave engineering = 微波工程 (英文版) (第三版)PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 ELECTROMAGNETIC THEORY1

1.1 Introduction to Microwave Engineering1

Applications of Microwave Engineering2

A Short History of Microwave Engineering3

1.2 Maxwell’s Equations5

1.3 Fields in Media and Boundary Conditions9

Fields at a General Material Interface11

Fields at a Dielectric Interface13

Fields at the Interface with a Perfect Conductor (Electric Wall)13

The Magnetic Wall Boundary Condition14

The Radiation Condition14

1.4 The Wave Equation and Basic Plane Wave Solutions14

The Helmholtz Equation14

Plane Waves in a Lossless Medium15

Plane Waves in a General Lossy Medium16

Plane Waves in a Good Conductor18

1.5 General Plane Wave Solutions19

Circularly Polarized Plane Waves23

1.6 Energy and Power24

Power Absorbed by a Good Conductor26

1.7 Plane Wave Reflection from a Media Interface27

General Medium28

Lossless Medium29

Good Conductor30

Perfect Conductor32

The Surface Impedance Concept32

1.8 Oblique Incidence at a Dielectric Interface34

Parallel Polarization35

Perpendicular Polarization36

Total Reflection and Surface Waves38

1.9 Some Useful Theorems40

The Reciprocity Theorem40

Image Theory42

2 TRANSMISSION LINE THEORY49

2.1 The Lumped-Element Circuit Model for a Transmission Line49

Wave Propagation on a Transmission Line51

The Lossless Line52

2.2 Field Analysis of Transmission Lines52

Transmission Line Parameters52

The Telegrapher Equations Derived from Field Analysis of a Coaxial Line55

Propagation Constant,Impedance,and Power Flow for the Lossless Coaxial Line57

2.3 The Terminated Lossless Transmission Line57

Special Cases of Lossless Terminated Lines60

2.4 The Smith Chart64

The Combined Impedance-Admittance Smith Chart68

The Slotted Line69

2.5 The Quarter-Wave Transformer73

The Impedance Viewpoint73

The Multiple Reflection Viewpoint75

2.6 Generator and Load Mismatches77

Load Matched to Line78

Generator Matched to Loaded Line78

Conjugate Matching78

2.7 Lossy Transmission Lines79

The Low-Loss Line79

The Distortionless Line81

The Terminated Lossy Line82

The Perturbation Method for Calculating Attenuation83

The Wheeler Incremental Inductance Rule84

3 TRANSMISSION LINES AND WAVEGUIDES91

3.1 General Solutions for TEM,TE,and TM Waves92

TEM Waves94

TE Waves96

TM Waves96

Attenuation Due to Dielectric Loss97

3.2 Parallel Plate Waveguide98

TEM Modes99

TM Modes100

TE Modes103

3.3 Rectangular Waveguide106

TE Modes106

TM Modes111

TEm0 Modes of a Partially Loaded Waveguide115

3.4 Circular Waveguide117

TE Modes118

TM Modes121

3.5 Coaxial Line126

TEM Modes126

Higher Order Modes127

3.6 Surface Waves on a Grounded Dielectric Slab131

TM Modes131

TE Modes134

3.7 Stripline137

Formulas for Propagation Constant,Characteristic Impedance,and Attenuation138

An Approximate Electrostatic Solution140

3.8 Microstrip143

Formulas for Effective Dielectric Constant,Characteristic Impedance,and Attenuation144

An Approximate Electrostatic Solution146

3.9 The Transverse Resonance Technique149

TE0n Modes of a Partially Loaded Rectangular Waveguide150

3.10 Wave Velocities and Dispersion151

Group Velocity151

3.11 Summary of Transmission Lines and Waveguides154

Other Types of Lines and Guides154

4 MICROWAVE NETWORK ANALYSIS161

4.1 Impedance and Equivalent Voltages and Currents162

Equivalent Voltages and Currents162

The Concept of Impedance166

Even and Odd Properties of Z(ω) and Γ(ω)169

4.2 Impedance and Admittance Matrices170

Reciprocal Networks171

Lossless Networks173

4.3 The Scattering Matrix174

Reciprocal Networks and Lossless Networks177

A Shift in Reference Planes180

Generalized Scattering Parameters181

4.4 The Transmission (ABCD) Matrix183

Relation to Impedance Matrix185

Equivalent Circuits for Two-Port Networks186

4.5 Signal Flow Graphs189

Decomposition of Signal Flow Graphs190

Application to TRL Network Analyzer Calibration193

4.6 Discontinuities and Modal Analysis197

Modal Analysis of an H-Plane Step in Rectangular Waveguide199

4.7 Excitation of Waveguides—Electric and Magnetic Currents204

Current Sheets That Excite Only One Waveguide Mode204

Mode Excitation from an Arbitrary Electric or Magnetic Current Source206

4.8 Excitation of Waveguides—Aperture Coupling209

Coupling Through an Aperture in a Transverse Waveguide Wall212

Coupling Through an Aperture in the Broad Wall of a Waveguide214

5 IMPEDANCE MATCHING AND TUNING222

5.1 Matching with Lumped Elements (L Networks)223

Analytic Solutions224

Smith Chart Solutions225

5.2 Single-Stub Tuning228

Shunt Stubs228

Series Stubs232

5.3 Double-Stub Tuning235

Smith Chart Solution235

Analytic Solution238

5.4 The Quarter-Wave Transformer240

5.5 The Theory of Small Reflections244

Single-Section Transformer244

Multisection Transformer245

5.6 Binomial Multisection Matching Transformers246

5.7 Chebyshev Multisection Matching Transformers250

Chebyshev Polynomials251

Design of Chebyshev Transformers252

5.8 Tapered Lines255

Exponential Taper257

Triangular Taper258

Klopfenstein Taper258

5.9 The Bode-Fano Criterion261

6 MICROWAVE RESONATORS266

6.1 Series and Parallel Resonant Circuits266

Series Resonant Circuit266

Parallel Resonant Circuit269

Loaded and Unloaded Q271

6.2 Transmission Line Resonators272

Short-Circuited λ /2 Line272

Short-Circuited λ/4 Line275

Open-Circuited λ/2 Line276

6.3 Rectangular Waveguide Cavities278

Resonant Frequencies278

Q of the TE10e Mode279

6.4 Circular Waveguide Cavities282

Resonant Frequencies282

Q of the TEnm e Mode284

6.5 Dielectric Resonators287

Resonant Frequencies of TE01δ Mode287

6.6 Excitation of Resonators291

Critical Coupling291

A Gap-Coupled Microstrip Resonator292

An Aperture-Coupled Cavity296

6.7 Cavity Perturbations298

Material Perturbations298

Shape Perturbations300

7 POWER DIVIDERS AND DIRECTIONAL COUPLERS308

7.1 Basic Properties of Dividers and Couplers308

Three-Port Networks (T- Junctions)309

Four-Port Networks (Directional Couplers)311

7.2 The T -Junction Power Divider315

Lossless Divider316

Resistive Divider317

7.3 The Wilkinson Power Divider318

Even-Odd Mode Analysis319

Unequal Power Division and N-Way Wilkinson Dividers322

7.4 Waveguide Directional Couplers323

Bethe Hole Coupler324

Design of Multihole Couplers327

7.5 The Quadrature (90°) Hybrid333

Even-Odd Mode Analysis333

7.6 Coupled Line Directional Couplers337

Coupled Line Theory337

Design of Coupled Line Couplers341

Design of Multisection Coupled Line Couplers345

7.7 The Lange Coupler349

7.8 The 180° Hybrid352

Even-Odd Mode Analysis of the Ring Hybrid354

Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid357

Waveguide Magic-T361

7.9 Other Couplers361

8 MICROWAVE FILTERS370

8.1 Periodic Structures371

Analysis of Infinite Periodic Structures372

Terminated Periodic Structures374

k-β Diagrams and Wave Velocities375

8.2 Filter Design by the Image Parameter Method378

Image Impedances and Transfer Functions for Two-Port Networks378

Constant-k Filter Sections380

m-Derived Filter Sections383

Composite Filters386

8.3 Filter Design by the Insertion Loss Method389

Characterization by Power Loss Ratio389

Maximally Flat Low-Pass Filter Prototype392

Equal-Ripple Low-Pass Filter Prototype394

Linear Phase Low-Pass Filter Prototypes396

8.4 Filter Transformations398

Impedance and Frequency Scaling398

Bandpass and Bandstop Transformations401

8.5 Filter Implementation405

Richard’s Transformation406

Kuroda’s Identities406

Impedance and Admittance Inverters411

8.6 Stepped-Impedance Low-Pass Filters412

Approximate Equivalent Circuits for Short Transmission Line Sections412

8.7 Coupled Line Filters416

Filter Properties of a Coupled Line Section416

Design of Coupled Line Bandpass Filters420

8.8 Filters Using Coupled Resonators427

Bandstop and Bandpass Filters Using Quarter-Wave Resonators427

Bandpass Filters Using Capacitively Coupled Series Resonators431

Bandpass Filters Using Capacitively Coupled Shunt Resonators433

9 NOISE AND ACTIVE RF COMPONENTS441

9.1 Noise in Microwave Circuits442

Dynamic Range and Sources of Noise442

Noise Power and Equivalent Noise Temperature444

Measurement of Noise Temperature447

Noise Figure448

Noise Figure of a Cascaded System450

Noise Figure of a Passive Two-Port Network452

Noise Figure of a Mismatched Lossy Line453

9.2 Dynamic Range and Intermodulation Distortion455

Gain Compression456

Intermodulation Distortion457

Third-Order Intercept Point459

Dynamic Range460

Intercept Point of a Cascaded System462

Passive Intermodulation464

9.3 RF Diode Characteristics464

Schottky Diodes and Detectors464

PIN Diodes and Control Circuits469

Varactor Diodes475

Other Diodes476

9.4 RF Transistor Characteristics477

Field Effect Transistors (FETs)478

Bipolar Junction Transistors (BJTs)480

9.5 Microwave Integrated Circuits481

Hybrid Microwave Integrated Circuits482

Monolithic Microwave Integrated Circuits483

10 MICROWAVE AMPLIFIER DESIGN491

10.1 Two-Port Power Gains491

Definitions of Two-Port Power Gains492

Further Discussion of Two-Port Power Gains495

10.2 Stability497

Stability Circles498

Tests for Unconditional Stability500

10.3 Single-Stage Transistor Amplifier Design503

Design for Maximum Gain (Conjugate Matching)503

Constant Gain Circles and Design for Specified Gain508

Low-Noise Amplifier Design512

10.4 Broadband Transistor Amplifier Design516

Balanced Amplifiers517

Distributed Amplifiers520

10.5 Power Amplifiers525

Characteristics of Power Amplifiers and Amplifier Classes525

Large-Signal Characterization of Transistors526

Design of Class A Power Amplifiers527

11 OSCILLATORS AND MIXERS532

11.1 RF Oscillators533

General Analysis533

Oscillators Using a Common Emitter BJT534

Oscillators Using a Common Gate FET536

Practical Considerations537

Crystal Oscillators539

11.2 Microwave Oscillators540

Transistor Oscillators542

Dielectric Resonator Oscillators545

11.3 Oscillator Phase Noise549

Representation of Phase Noise549

Leeson’s Model for Oscillator Phase Noise550

11.4 Frequency Multipliers554

Reactive Diode Multipliers (Manley-Rowe Relations)555

Resistive Diode Multipliers557

Transistor Multipliers559

11.5 Overview of Microwave Sources563

Solid-State Sources564

Microwave Tubes567

11.6 Mixers570

Mixer Characteristics571

Single-Ended Diode Mixer575

Single-Ended FET Mixer577

Balanced Mixer580

Image Reject Mixer582

Other Mixers584

APPENDICES588

A Prefixes589

B Vector Analysis589

C Bessel Functions591

D Other Mathematical Results594

E Physical Constants594

F Conductivities for Some Materials595

G Dielectric Constants and Loss Tangents for Some Materials595

H Properties of Some Microwave Ferrite Materials596

I Standard Rectangular Waveguide Data596

J Standard Coaxial Cable Data597

ANSWERS TO SELECTED PROBLEMS598

USEFUL RESULTS600

VECTOR ANALYSIS602

INDEX604

热门推荐