图书介绍
复分析PDF|Epub|txt|kindle电子书版本网盘下载
![复分析](https://www.shukui.net/cover/42/31828294.jpg)
- (美)加默兰著 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7506292297
- 出版时间:2008
- 标注页数:478页
- 文件大小:100MB
- 文件页数:40227501页
- 主题词:复分析-英文
PDF下载
下载说明
复分析PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
FIRST PART1
Chapter Ⅰ The Complex Plane and Elementary Functions1
1. Complex Numbers1
2. Polar Representation5
3. Stereographic Projection11
4. The Square and Square Root Functions15
5. The Exponential Function19
6. The Logarithm Function21
7. Power Functions and Phase Factors24
8. Trigonometric and Hyperbolic Functions29
Chapter Ⅱ Analytic Functions33
1. Review of Basic Analysis33
2. Analytic Functions42
3. The Cauchy-Riemann Equations46
4. Inverse Mappings and the Jacobian51
5. Harmonic Functions54
6. Conformal Mappings58
7. Fractional Linear Transformations63
Chapter Ⅲ Line Integrals and Harmonic Functions70
1. Line Integrals and Green's Theorem70
2. Independence of Path76
3. Harmonic Conjugates83
4. The Mean Value Property85
5. The Maximum Principle87
6. Applications to Fluid Dynamics90
7. Other Applications to Physics97
Chapter Ⅳ Complex Integration and Analyticity102
1. Complex Line Integrals102
2. Fundamental Theorem of Calculus for Analytic Functions107
3. Cauchy's Theorem110
4. The Cauchy Integral Formula113
5. Liouville's Theorem117
6. Morera's Theorem119
7. Goursat's Theorem123
8. Complex Notation and Pompeiu's Formula124
Chapter Ⅴ Power Series130
1. Infinite Series130
2. Sequences and Series of Functions133
3. Power Series138
4. Power Series Expansion of an Analytic Function144
5. Power Series Expansion at Infinity149
6. Manipulation of Power Series151
7. The Zeros of an Analytic Function154
8. Analytic Continuation158
Chapter Ⅵ Laurent Series and Isolated Singularities165
1. The Laurent Decomposition165
2. Isolated Singularities of an Analytic Function171
3. Isolated Singularity at Infinity178
4. Partial Fractions Decomposition179
5. Periodic Functions182
6. Fourier Series186
Chapter Ⅶ The Residue Calculus195
1. The Residue Theorem195
2. Integrals Featuring Rational Functions199
3. Integrals of Trigonometric Functions203
4. Integrands with Branch Points206
5. Fractional Residues209
6. Principal Values212
7. Jordan's Lemma216
8. Exterior Domains219
SECOND PART224
Chapter Ⅷ The Logarithmic Integral224
1. The Argument Principle224
2. Rouche's Theorem229
3. Hurwitz's Theorem231
4. Open Mapping and Inverse Function Theorems232
5. Critical Points236
6. Winding Numbers242
7. The Jump Theorem for Cauchy Integrals246
8. Simply Connected Domains252
Chapter Ⅸ The Schwarz Lemma and Hyperbolic Geometry260
1. The Schwarz Lemma260
2. Conformal Self-Maps of the Unit Disk263
3. Hyperbolic Geometry266
Chapter Ⅹ Harmonic Functions and the Reflection Principle274
1. The Poisson Integral Formula274
2. Characterization of Harmonic Functions280
3. The Schwarz Reflection Principle282
Chapter Ⅺ Conformal Mapping289
1. Mappings to the Unit Disk and Upper Half-Plane289
2. The Riemann Mapping Theorem294
3. The Schwarz-Christoffel Formula296
4. Return to Fluid Dynamics304
5. Compactness of Families of Functions306
6. Proof of the Riemann Mapping Theorem311
THIRD PART315
Chapter Ⅻ Compact Families of Meromorphic Functions315
1. Marty's Theorem315
2. Theorems of Montel and Picard320
3. Julia Sets324
4. Connectedness of Julia Sets333
5. The Mandelbrot Set338
Chapter ⅩⅢ Approximation Theorems342
1. Runge's Theorem342
2. The Mittag-Leffler Theorem348
3. Infinite Products352
4. The Weierstrass Product Theorem358
Chapter ⅩⅣ Some Special Functions361
1. The Gamma Function361
2. Laplace Transforms365
3. The Zeta Function370
4. Dirichlet Series376
5. The Prime Number Theorem382
Chapter ⅩⅤ The Dirichlet Problem390
1. Green's Formulae390
2. Subharmonic Functions394
3. Compactness of Families of Harmonic Functions398
4. The Perron Method402
5. The Riemann Mapping Theorem Revisited406
6. Green's Function for Domains with Analytic Boundary407
7. Green's Function for General Domains413
Chapter ⅩⅥ Riemann Surfaces418
1. Abstract Riemann Surfaces418
2. Harmonic Functions on a Riemann Surface426
3. Green's Function of a Surface429
4. Symmetry of Green's Function434
5. Bipolar Green's Function436
6. The Uniformization Theorem438
7. Covering Surfaces441
Hints and Solutions for Selected Exercises447
References469
List of Symbols471
Index473