图书介绍

最新考研数学(一) 常考题型解题方法技巧归纳PDF|Epub|txt|kindle电子书版本网盘下载

最新考研数学(一) 常考题型解题方法技巧归纳
  • 毛纲源编著 著
  • 出版社: 武汉:华中科技大学出版社
  • ISBN:9787560948973
  • 出版时间:2008
  • 标注页数:511页
  • 文件大小:19MB
  • 文件页数:528页
  • 主题词:高等数学-研究生-入学考试-解题

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

最新考研数学(一) 常考题型解题方法技巧归纳PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1篇 高等数学1

1.1 函数、极限、连续1

1.1.1 求几类函数的表达式1

题型一 求分段函数的复合函数1

题型二 已知f[g(x)]=?(x),其中?(x)是已知函数,求f或g1

1.1.2 函数的奇偶性2

题型一 判别(证明)几类函数的奇偶性2

题型二 奇、偶函数性质的应用3

1.1.3 讨论函数的有界性和周期性4

题型一 判定有限开区间内连续函数的有界性4

题型二 判定无穷区间内连续函数的有界性4

题型三 判定分段连续函数的有界性4

题型四 讨论函数的周期性5

1.1.4 理解极限概念7

题型一 正确理解极限定义中的“ε、N”,“ε、δ”,“ε、X”语言的含义7

题型二 正确区别无穷大量与无界变量7

1.1.5 求未定式极限8

题型一 求0/0型或∞/∞型极限8

题型二 求0·∞型极限10

题型三 求∞-∞型极限11

题型四 求幂指函数(0°型,∞°型,1∞型)极限11

1.1.6 求数列极限14

题型一 求无穷多项和的极限14

题型二 求由递推关系式给出的数列极限15

1.1.7 求几类特殊子函数形式的函数极限17

题型一 求须先考察左、右极限的函数极限17

题型二 求含根式差的函数极限18

题型三 求含指数函数差的函数极限18

题型四 求含lnf(x)的函数极限,其中lim x→□f(x)=119

题型五 求含有界变量因子的函数极限19

1.1.8 由含未知函数的一(些)极限,求含该函数的另一极限20

1.1.9 已知极限式的极限,求其待定常数20

题型一 求有理函数极限式中的待定常数21

题型二 确定分式函数极限式中的待定常数21

1.1.10 比较和确定无穷小量的阶22

题型一 比较无穷小量的阶23

题型二 确定无穷小量为几阶无穷小量24

1.1.11 讨论函数的连续性及间断点的类型24

题型一 判别函数的连续性24

题型二 讨论分段函数的连续性25

题型三 讨论含参变量的极限式所定义的函数的连续性26

题型四 判别函数间断点的类型27

1.1.12 连续函数性质的两点应用28

题型一 利用连续函数性质证明中值等式命题28

题型二 证明方程实根的存在性29

习题1.130

1.2 一元函数微分学32

1.2.1 导数定义的三点应用32

题型一 判断函数在某点的可导性32

题型二 利用导数定义求某些函数的极限35

题型三 利用导数定义讨论函数性质36

1.2.2 讨论分段函数的可导性及其导函数的连续性37

题型一 讨论分段函数的可导性37

题型二 讨论分段函数的导函数的连续性38

题型三 讨论某类特殊的分段函数在其分段点的连续性、可导性及其导函数的连续性38

1.2.3 讨论含绝对值函数的可导性38

题型一 讨论绝对值函数|f(x)|的可导性38

题型二 讨论函数f(x)=|?(x)|g(x)的可导性39

1.2.4 求一元函数的导数和微分40

题型一 求复合函数的一阶与二阶导数40

题型二 求反函数的导数40

题型三 求隐函数的导数41

题型四 求分段函数的一阶、二阶导数42

题型五 求幂指函数f(x)g(x)的导数42

题型六 求由参数方程所确定的函数的导数42

题型七 求某些简单函数的高阶导数43

题型八 求一元函数的微分45

1.2.5 利用函数的连续性、可导性确定其待定常数47

题型一 利用函数的连续性确定其待定常数47

题型二 根据函数的可导性确定待定常数47

1.2.6 利用微分中值定理的条件及其结论解题48

1.2.7 利用罗尔定理证明中值等式50

题型一 证明存在ξ∈(a,b),使cf′(ξ)=bg′(ξ),其中c,b为常数50

题型二 证明存在ξ∈(a,b),使g(ξ)f′(ξ)+h(ξ)f(ξ)=Q(ξ)51

题型三 证明存在ξ∈(a,b),使f(ξ)g′(ξ)+f′(ξ)g(ξ)=051

题型四 证明存在ξ∈(a,b),使f′(ξ)g(ξ)-f(ξ)g′(ξ)=0(g(x)≠0)51

题型五 证明存在ξ∈(a,b),使f′(ξ)+g′(ξ)f(ξ)=052

题型六 证明存在ξ∈(a,b),使nf(ξ)+ξf′(ξ)=0(n为正整数)52

题型七 证明存在ξ∈(a,b),使G(ξ)=052

题型八 证明存在ξ∈(a,b),使f′(ξ)+g′(ξ)[f(ξ)-bξ]=053

题型九 已知函数在端点和在别处的取值情况,证明有关的中值等式54

题型十 证明题设中有定积分等式的中值等式54

题型十一 证明存在ξ∈(a,b),使F(k)(ξ)=0(k≥2)56

1.2.8 拉格朗日中值定理的应用56

题型一 证明与函数改变量(增量)有关的中值(不)等式56

题型二 证明函数与其导数的关系57

题型三 求解与函数差值有关的问题58

题型四 证明多个中值所满足的中值等式59

题型五 求中值的极限位置59

1.2.9 利用柯西中值定理证明中值等式60

题型一 证明两函数差值(增量)比的中值等式60

题型二 证明两函数导数比的中值等式60

1.2.10 泰勒定理的两点应用61

题型一 证明与高阶导数有关的中值(不)等式61

题型二 计算按常规方法不好求的未定式极限63

1.2.11 利用导数证明函数不等式64

题型一 证明含有或可化为函数改变量部分的不等式64

题型二 已知F(a)≥0(或F(b)≥0),证明x>a(或x<b)时F(x)>064

题型三 证明含常数加项的不等式65

题型四 证明含两个变量(常数)的函数(数值)不等式66

题型五 证明两点函数值组成的(中值)不等式66

1.2.12 讨论函数的性态67

题型一 证明函数在区间I上是一个常数67

题型二 证明(判别)函数的单调性67

题型三 利用极限式讨论函数是否取得极值67

题型四 利用二阶微分方程讨论函数是否取极值,其曲线是否有拐点69

题型五 利用导数不等式,讨论函数是否取极值,其曲线是否有拐点69

题型六 求曲线凹凸区间与拐点70

题型七 求函数的单调区间、极值、最值71

题型八 求曲线的渐近线73

1.2.13 利用函数性态讨论方程的根74

题型一 讨论不含参数的方程实根的存在性及其个数74

题型二 讨论含参数的方程实根的存在性及其个数75

1.2.14 函数性态与函数图形76

题型一 利用函数性态作函数图形76

题型二 利用函数的图形,确定其导函数的图形77

题型三 利用导函数的图形,确定原来函数的性态77

1.2.15 一元函数微分学的应用78

题型一 求平面曲线的切线方程和法线方程78

题型二 求解与切线在坐标轴上的截距有关的问题79

题型三 求解与两曲线相切的有关问题80

题型四 求解与平面曲线的曲率有关的问题80

习题1.281

1.3 一元函数积分学84

1.3.1 原函数与不定积分的关系84

题型一 已知某函数,求其原函数84

题型二 已知某函数的一个原函数,求该函数84

1.3.2 计算不定积分85

题型一 计算被积函数仅为一类或为两类不同函数的不定积分85

题型二 计算简单无理函数的不定积分86

题型三 求∫1/(ax+b)kf[1/(ax+b)k-1]dx,其中k≠1为正实数89

题型四 求∫f(x)/g(x)dx89

题型五 求被积函数的分母相差为常数的两函数乘积的不定积分91

题型六 求三角函数的不定积分91

题型七 求被积函数含反三角函数为因子函数的积分92

1.3.3 利用定积分性质计算定积分92

题型一 利用其几何意义计算定积分92

题型二 计算对称区间上的定积分93

题型三 计算周期函数的定积分94

题型四 利用定积分的常用计算公式计算定积分95

题型五 计算被积函数含函数导数的积分96

题型六 比较和估计定积分的大小96

题型七 求解含积分值为常数的函数方程97

题型八 计算几类须分子区间积分的定积分98

题型九 计算含参数的定积分99

题型十 计算需换元计算的定积分100

题型十一 求连续函数的定积分的极限101

1.3.4 求解与变限积分有关的问题101

题型一 计算含变限积分的极限101

题型二 求变限积分的导数103

题型三 求变限积分的定积分105

题型四 讨论变限积分函数的性态106

1.3.5 证明定积分等式106

题型一 证明定积分的变换公式106

题型二 证明定积分中值等式108

1.3.6 证明积分不等式109

题型一 证明积分限相等时不等式两端成为零的积分不等式109

题型二 证明函数及其导函数所满足的积分不等式110

题型三 证明∫?f(x)dx(或|∫?f(x)dx|)≤k(或≥k),k为常数110

题型四 证明题设中有二阶导数大(或小)于等于零的定积分不等式111

1.3.7 计算反常积分111

题型一 计算无穷区间上的反常积分111

题型二 判别∫?dx/xp与∫?dx/x(lnx)p(a>0)的敛散性113

题型三 计算无界函数的反常积分114

题型四 判别∫?dx/(b-x)p与∫?dx/(x-a)p的敛散性115

1.3.8 定积分的应用116

题型一 已知曲线方程,求其所围平面图形的面积116

题型二 已知曲线所围平面图形的面积(或其旋转体体积)反求该曲线117

题型三 计算平面曲线的弧长117

题型四 计算平行截面面积已知的立体体积118

题型五 求旋转体体积118

题型六 求旋转体的侧(表)面积120

题型七 求解几何应用与最值问题相结合的应用题121

题型八 计算变力所做的功122

题型九 计算液体的侧压力123

题型十 计算细杆对质点的引力123

题型十一 计算函数在区间上的平均值124

习题1.3124

1.4 向量代数和空间解析几何127

1.4.1 向量代数及其简单应用127

题型一 用坐标表达式进行向量运算127

题型二 计算向量的数量积、向量积、混合积128

题型三 利用向量运算证明(确定)向量关系129

1.4.2 求平面方程130

题型一 求过某已知点的平面方程130

题型二 求过已知直线的平面方程131

题型三 根据平面在坐标轴上的相对位置,求其方程131

题型四 求过两平面交线的平面方程132

1.4.3 求直线方程132

题型一 求过已知点的直线方程133

题型二 求过已知点且与已知直线相交的直线方程133

题型三 求与两直线相交的直线方程134

题型四 求直线在平面上的投影直线方程135

1.4.4 讨论直线与平面的位置关系135

题型一 讨论平面间的位置关系135

题型二 讨论直线与直线的位置关系137

题型三 讨论直线与平面的位置关系138

1.4.5 求二次曲面方程和空间曲线在坐标面上的投影方程138

题型一 求坐标面上曲线绕坐标轴旋转所得的旋转曲面方程139

题型二 求空间曲线绕坐标轴旋转所得的曲面方程139

题型三 求母线平行于坐标轴的柱面方程140

题型四 求空间曲线在坐标面上的投影方程141

1.4.6 求解空间解析几何与线性代数、微积分相结合的综合题141

习题1.4143

1.5 多元函数微分法及其应用145

1.5.1 正确理解二元函数连续、可偏导及可微之间的关系145

题型一 依定义判别二元函数在某点是否连续、可偏导及可微145

题型二 判别二元函数连续、可偏导、可微之间的关系146

1.5.2 计算多元函数的偏导数和全微分147

题型一 利用隐函数存在定理确定隐函数147

题型二 求抽象复合函数的偏导数147

题型三 计算隐函数的导数150

题型四 作变量代换将偏导数满足的方程变形151

题型五 求方向导数和梯度152

题型六 求二元函数的全微分154

1.5.3 多元函数微分学的应用155

题型一 已知空间曲线的参数方程,求其切线或法平面方程155

题型二 已知空间曲线为两曲面的交线,求其切线或法平面方程156

题型三 已知空间曲面方程,求其切平面或法线方程157

题型四 求二元函数的极值和最值158

题型五 求二(多)元函数的条件极值160

习题1.5162

1.6 多元函数积分学164

1.6.1 利用区域的对称性化简多元函数的积分164

题型一 计算积分区域具有对称性,被积函数具有奇偶性的重积分164

题型二 计算积分区域关于直线y=x对称的二重积分166

题型三 计算积分区域具有轮换对称性的三重积分167

题型四 计算积分曲线(面)具有对称性的第一类曲线(面)积分167

题型五 计算平面积分曲线关于y=x对称的第一类曲线积分168

题型六 计算空间积分曲线具有轮换对称性的第一类曲线积分168

题型七 计算积分曲线具有对称性的第二类曲线积分169

题型八 计算积分曲面具有对称性的第二类曲面积分170

1.6.2 交换积分次序及转换二次积分171

题型一 交换二次积分的积分次序171

题型二 转换二次积分172

1.6.3 计算二重积分174

题型一 计算被积函数分区域给出的二重积分174

题型二 计算圆域或部分圆域上的二重积分175

1.6.4 计算三重积分176

题型一 计算积分区域的边界方程均为一次的三重积分176

题型二 计算积分区域为旋转体的三重积分177

题型三 计算积分区域由球面或球面与锥面所围成的三重积分177

题型四 计算被积函数至少缺两个变量的三重积分178

题型五 计算易求出其截面区域上的二重积分的三重积分180

1.6.5 计算曲线积分180

题型一 计算第一类平面曲线积分180

题型二 求解平面上与路径无关的第二类曲线积分有关问题181

题型三 计算平面上与路径有关的第二类曲线积分185

题型四 计算空间第二类曲线积分187

1.6.6 计算曲面积分189

题型一 计算第一类曲面积分189

题型二 计算第二类曲面积分191

题型三 已知第二类曲面积分的值,求被积式中的未知函数197

1.6.7 多元函数积分学的应用198

题型一 计算空间曲线的弧长198

题型二 求曲面面积198

题型三 计算立体体积200

题型四 求质量、重心及转动惯量201

题型五 计算变力沿曲线所做的功203

题型六 计算物体对质点的引力205

题型七 计算向量场的散度与流量(通量)206

题型八 计算向量场的旋度与环流量207

习题1.6209

1.7 级数211

1.7.1 利用定义及其性质判别级数的敛散性211

题型一 判别一般项由相邻两项代数和组成的级数的敛散性211

题型二 利用级数的性质判别级数的敛散性211

1.7.2 判别三类常数项级数的敛散性212

题型一 判别正项级数的敛散性212

题型二 判别交错级数的敛散性215

题型三 判别任意项级数的敛散性216

1.7.3 证明常数项级数的敛散性218

题型一 证明一般项为相邻两项代数和的级数的敛散性218

题型二 已知一级数收敛,证明相关级数收敛218

题型三 已知一般项有极限,证明该级数的敛散性219

题型四 证明(判别)一般项为(含)定积分的级数的敛散性220

题型五 证明一般项用递推关系式给出的级数的敛散性220

题型六 已知函数高阶可导,证明由该函数值组成的级数的敛散性220

1.7.4 幂级数的收敛半径、收敛区间及收敛域的求法221

1.7.5 求级数的和223

题型一 求?P(n)xn的和函数,P(n)为n的多项式223

题型二 求?1/Q(n)xn的和函数,Q(n)为n的多项式225

题型三 求含阶乘因子的幂级数的和函数227

题型四 求数值级数的和228

1.7.6 将简单函数间接展开成幂级数231

题型一 求反三角函数的幂级数展开式231

题型二 将对数函数展成幂级数232

题型三 将有理分式函数展成幂级数233

题型四 将三角函数展成幂级数233

1.7.7 傅里叶级数233

题型一 将周期函数展为傅里叶级数233

题型二 求傅里叶系数238

题型三 求傅里叶级数的和函数在某点的值238

习题1.7238

1.8 常微分方程241

1.8.1 求解一阶线性微分方程241

题型一 求解可分离变量的微分方程241

题型二 求解齐次方程241

题型三 求解一阶线性方程242

题型四 求解几类可化为一阶线性方程的方程242

题型五 求解方程P(x,y)dx+Q(x,y)dy=0244

题型六 求解由变量的增量关系给出的一阶方程245

题型七 求满足某种性质的一阶微分方程的特解245

1.8.2 求解线性微分方程247

题型一 利用线性微分方程解的结构和性质求解有关问题247

题型二 求解可降阶的二阶微分方程248

题型三 求解高阶常系数齐次线性方程249

题型四 求解二阶常系数非齐次线性方程250

题型五 求解欧拉方程253

题型六 求解含变限积分的方程254

1.8.3 已知特解反求其常系数线性方程254

题型一 已知特解反求其齐次方程254

题型二 已知特解反求其非齐次方程255

1.8.4 用微分方程求解几何和物理中的简单应用题256

习题1.8260

第2篇 线性代数262

2.1 计算行列式262

2.1.1 计算数字型行列式262

题型一 计算非零元素主要在一条或两条对角线上的行列式262

题型二 计算非零元素在三条线上的行列式263

题型三 计算行(列)和相等的行列式264

题型四 计算范德蒙行列式265

题型五 求代数余子式线性组合的值265

题型六 求行列式中含某因子的所有项266

2.1.2 计算抽象矩阵的行列式267

题型一 求由行(列)向量表示的矩阵的行列式的值267

题型二 计算与伴随矩阵有关的矩阵行列式268

题型三 计算含零子块的四分块矩阵的行列式269

题型四 证明方阵的行列式等于零,或不等于零269

2.1.3 克莱姆法则的应用270

习题2.1272

2.2 矩阵273

2.2.1 证明矩阵的可逆性273

题型一 已知一矩阵等式证明有关矩阵可逆,并求其逆矩阵273

题型二 证明矩阵A可逆,且A-1=B274

题型三 证明和(差)矩阵可逆275

题型四 求矩阵的逆矩阵,该矩阵含一(些)矩阵的逆矩阵275

题型五 证明方阵为不可逆矩阵276

2.2.2 矩阵元素给定,求其逆矩阵的方法276

2.2.3 求解与伴随矩阵有关的问题277

题型一 计算与伴随矩阵有关的矩阵行列式277

题型二 求与伴随矩阵有关的矩阵的逆矩阵278

题型三 求与伴随矩阵有关的矩阵的秩279

题型四 求伴随矩阵279

2.2.4 计算n阶矩阵的高次幂279

题型一 计算能分解为一列向量与一行向量相乘的矩阵的高次幂279

题型二 计算能相似对角化的矩阵的高次幂280

题型三 计算能分解为两可交换矩阵之和的矩阵的高次幂281

题型四 计算其平方等于原矩阵或单位矩阵倍数的矩阵高次幂281

2.2.5 求矩阵的秩282

题型一 求元素具体给定的矩阵的秩282

题型二 求抽象矩阵的秩283

题型三 已知矩阵的秩,求其待定常数285

2.2.6 分块矩阵乘法运算的应用举例285

2.2.7 求解矩阵方程286

题型一 求解含单位矩阵加项的矩阵方程287

题型二 求解只含一个未知矩阵的矩阵方程288

题型三 求解含多个未知矩阵的矩阵方程288

题型四 求与已知矩阵可交换的所有矩阵291

题型五 已知一矩阵方程,求方程中某矩阵的行列式291

2.2.8 初等变换与初等矩阵的关系的应用292

题型一 用初等矩阵表示相应的初等变换292

题型二 利用初等矩阵的逆矩阵的性质计算矩阵293

习题2.2293

2.3 向量296

2.3.1 判别向量组线性相关与线性无关296

题型一 用线性相关性定义做选择题、填空题296

题型二 判别分量已知的向量组的线性相关性297

题型三 证明几类向量组的线性相关性298

题型四 已知向量组的线性相关性,求其待定常数302

2.3.2 判定向量能否由向量组线性表示302

题型一 判定分量已知的向量能否由向量组线性表示302

题型二 判断一抽象向量能否由向量组线性表示304

题型三 判别一向量组能否由另一向量组线性表示305

2.3.3 两向量组等价的常用证法305

2.3.4 向量组的秩与极大线性无关组308

题型一 求分量给出的向量组的秩及其极大线性无关组309

题型二 将向量用极大线性无关组线性表示310

题型三 证明抽象向量组的秩有关问题310

题型四 证某向量组为一极大无关组311

2.3.5 向量空间312

题型一 求解空间的基、标准正交基(规范正交基)312

题型二 求过渡矩阵314

题型三 求向量在某组基下的坐标314

习题2.3316

2.4 线性方程组318

2.4.1 判定线性方程组解的情况318

题型一 判定齐次线性方程组解的情况318

题型二 判定非齐次线性方程组解的情况320

2.4.2 由其解反向求方程组或其参数321

题型一 已知AX=0的解的情况,反求A中参数322

题型二 已知AX=b的解的情况,反求方程组中参数322

题型三 已知其基础解系,求该方程组的系数矩阵323

2.4.3 证明一组向量为基础解系324

2.4.4 基础解系和特解的简便求法325

2.4.5 求解含参数的线性方程组326

题型一 求解方程个数与未知数个数相等的含参数的线性方程组327

题型二 求解方程个数与未知数个数不等的含参数的线性方程组329

题型三 求解参数仅出现在常数项的线性方程组330

题型四 求含参数的方程组满足一定条件的通解330

2.4.6 求抽象线性方程组的通解331

题型一 A没有具体给出,求AX=0的通解331

题型二 已知AX=b的特解,求其通解332

题型三 利用线性方程组的向量形式求(证明)其解333

2.4.7 求两线性方程组的非零公共解334

题型一 求两齐次线性方程组的非零公共解334

题型二 证明两齐次线性方程组有非零公共解335

题型三 讨论两方程组同解的有关问题335

习题2.4337

2.5 矩阵的特征值、特征向量340

2.5.1 求矩阵的特征值、特征向量340

题型一 求元素给出的矩阵的特征值、特征向量340

题型二 证明(判别)抽象矩阵的特征值、特征向量342

2.5.2 由特征值和(或)特征向量反求其矩阵343

题型一 由特征值和(或)特征向量反求矩阵的待定常数343

题型二 已知特征值、特征向量,反求其矩阵344

题型三 计算Anβ,其中β为列向量,A为方阵346

2.5.3 求相关联矩阵的特征值、特征向量346

2.5.4 判别同阶方阵是否相似348

题型一 判别方阵是否可对角化348

题型二 判别两同阶方阵是否相似350

2.5.5 相似矩阵性质的简单应用351

2.5.6 与两矩阵相似有关的计算352

题型一 矩阵A可相似对角化,求A中待定常数及可逆矩阵P,使P-1AP=diag(λ1,λ2,…,λn),其中λ1,λ2,…,λn为A的特征值352

题型二 A为实对称矩阵,求A中待定常数及正交矩阵Q,使Q-1AQ=QTAQ=diag(λ1,λ2,…,λn),其中λ1,λ2,…,λn为A的特征值353

题型三 已知矩阵A和可逆矩阵P满足一等式,求矩阵B,使P-1AP=B354

习题2.5355

2.6 二次型357

2.6.1 化二次型为标准形357

题型一 化二次型为标准形357

题型二 已知二次型的标准形,确定该二次型360

2.6.2 判别或证明实二次型(实对称矩阵)的正定性361

题型一 判别具体给定的二次型的正定性361

题型二 判别或证明抽象的二次型(实对称矩阵)的正定性361

题型三 确定待定常数使二次型或其矩阵正定363

题型四 证明与正定矩阵相关联矩阵的正定性364

2.6.3 合同矩阵364

题型一 判别两实对称矩阵合同364

题型二 讨论矩阵等价、相似及合同的关系365

习题2.6366

第3篇 概率论与数理统计369

3.1 随机事件和概率369

3.1.1 随机事件间的关系及运算369

题型一 描绘随机试验的样本空间369

题型二 用式子表示事件关系及其运算369

题型三 利用事件运算的性质或图示法简化事件算式370

题型四 求满足一定条件的事件关系370

3.1.2 直接计算随机事件的概率371

题型一 计算古典型概率371

题型二 计算几何型概率372

题型三 计算伯努利概型中事件的概率374

3.1.3 间接计算随机事件的概率374

题型一 计算和、差、积事件的概率374

题型二 求与包含关系有关的事件的概率376

题型三 计算与互斥事件有关的事件的概率377

题型四 求与条件概率有关的事件的概率377

题型五 求与他事件有关的单个事件的概率377

题型六 判别或证明事件概率不等式378

3.1.4 几个计算概率公式的实际应用378

题型一 用加法公式求解实际应用题378

题型二 用条件概率与概率的乘法公式求解实际应用题379

题型三 用全概公式和逆概(贝叶斯)公式求解实际应用题379

题型四 利用抽签原理计算事件概率382

3.1.5 判别事件的独立性383

题型一 判别(证明)两事件相互独立383

题型二 判别(证明)n(n>2)个事件相互独立384

习题3.1385

3.2 一维随机变量及其分布388

3.2.1 分布列、概率密度及分布函数性质的应用388

题型一 判别分布列、概率密度及分布函数389

题型二 证明某实函数为某随机变量的分布函数390

题型三 利用分布的性质,确定待定常数或所满足的条件390

题型四 求随机变量落在某点或某区间上的概率391

3.2.2 求分布列(概率分布)、概率密度及分布函数391

题型一 求概率分布(分布律)及其分布函数391

题型二 求连续型随机变量的分布函数或其取值393

题型三 求概率密度394

3.2.3 利用常见分布计算有关事件的概率394

题型一 利用二项分布计算伯努利概型中事件的概率394

题型二 利用超几何分布计算事件的概率396

题型三 利用几何分布计算事件的概率397

题型四 利用泊松分布计算事件的概率397

题型五 利用均匀分布计算事件的概率398

题型六 利用指数分布计算事件的概率399

题型七 利用正态分布计算事件的概率400

3.2.4 随机变量函数的分布403

题型一 已知一离散型随机变量的分布,求其函数(另一离散型随机变量)的分布403

题型二 已知一连续型随机变量的分布,求其函数(另一连续型随机变量)的分布404

题型三 已知一连续型随机变量的分布,求其函数(离散型随机变量)的分布406

题型四 讨论随机变量函数分布的性质407

习题3.2408

3.3 二维随机变量的联合概率分布410

3.3.1 求二维随机变量的分布410

题型一 求二维离散型随机变量的联合分布律410

题型二 求二维随机变量的边缘分布413

题型三 由联合分布、边缘分布求条件分布415

题型四 由条件分布反求联合分布、边缘分布418

题型五 已知分区域定义的联合密度,求其分布函数419

3.3.2 随机变量的独立性420

题型一 判别两随机变量的独立性420

题型二 利用独立性确定联合分布中的待定常数424

3.3.3 计算二维随机变量取值的概率425

题型一 计算两离散型随机变量运算后取值的概率425

题型二 求二维连续型随机变量落入平面区域内的概率426

题型三 求与max(X,Y)或(和)min(X,Y)有关的概率427

题型四 求系数为随机变量的二次方程有根、无根的概率427

3.3.4 求二维随机变量函数的分布428

题型一 已知(X,Y)的联合分布律,求Z=g(X,Y)的分布律428

题型二 求两连续型随机变量的简单函数的分布429

题型三 已知X,Y的分布,求max(X,Y)或(和)min(X,Y)的分布433

习题3.3435

3.4 随机变量的数字特征438

3.4.1 求一维随机变量的数字特征438

题型一 求随机变量的数学期望与方差438

题型二 求随机变量函数的数学期望441

题型三 计算随机变量的矩443

3.4.2 求二维随机变量的数字特征444

题型一 求(X,Y)的函数g(X,Y)的数学期望和方差444

题型二 计算协方差和相关系数445

3.4.3 计算两类分布的数字特征449

题型一 计算正态分布的数字特征449

题型二 计算Z=max(X,Y)或(和)W=min(X,Y)的数字特征450

3.4.4 讨论随机变量相关性与独立性的关系452

题型一 确定两随机变量相关与不相关452

题型二 讨论相关性与独立性的关系453

3.4.5 已知数字特征,求分布中的待定常数454

3.4.6 求解两类综合应用题456

题型一 求解与数字特征有关的实际应用题456

题型二 求解概率论与其他数学分支的综合应用题457

习题3.4459

3.5 大数定律和中心极限定理461

3.5.1 用切比雪夫不等式估计事件的概率461

3.5.2 大数定律成立的条件和结论463

题型一 利用三个大数定律成立的条件解题465

题型二 求随机变量序列依概率的收敛值466

3.5.3 两个中心极限定理的简单应用468

题型一 利用棣莫弗-拉普拉斯定理近似计算事件概率468

题型二 已知随机变量取值的概率,估计取值范围469

题型三 应用列维-林德伯格中心极限定理的条件、结论解题469

题型四 近似计算n个随机变量之和取值的概率470

题型五 已知n个随机变量之和取值的概率,求个数n471

习题3.5472

3.6 数理统计初步474

3.6.1 求统计量的分布474

题型一 求统计量的分布及其分布参数475

题型二 求统计量取值的概率478

题型三 求统计量的数字特征479

题型四 求经验分布函数480

3.6.2 参数估计481

题型一 求总体分布中未知参数的矩估计量(值)481

题型二 求未知参数的极(最)大似然估计量(值)482

题型三 判别估计量的无偏性、有效性和一致性(相合性)485

题型四 求正态总体参数的置信区间及其有关参数489

3.6.3 假设检验494

题型一 计算简单情形下的两类错误概率494

题型二 对单个正态总体参数进行假设检验495

题型三 对两个正态总体参数进行假设检验497

题型四 用检验方法及其结论做填空题与选择题498

习题3.6499

习题答案与提示502

热门推荐