图书介绍
数学物理 英文PDF|Epub|txt|kindle电子书版本网盘下载
![数学物理 英文](https://www.shukui.net/cover/30/31071156.jpg)
- (法)阿培著 著
- 出版社: 世界图书北京出版公司
- ISBN:9787510050633
- 出版时间:2013
- 标注页数:642页
- 文件大小:103MB
- 文件页数:665页
- 主题词:数学物理方法-英文
PDF下载
下载说明
数学物理 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Reminders: convergence of sequences and series1
1.1 The problem of limits in physics1
1.1.a Two paradoxes involving kinetic energy1
1.1.b Romeo, Juliet, and viscous fluids5
1.1.c Potential wall in quantum mechanics7
1.1.d Semi-infinite filter behaving as waveguide9
1.2 Sequences12
1.2.a Sequences in a normed vector space12
1.2.b Cauchy sequences13
1.2.c The fixed point theorem15
1.2.d Double sequences16
1.2.e Sequential definition of the limit of a function17
1.2.f Sequences of functions18
1.3 Series23
1.3.a Series in a normed vector space23
1.3.b Doubly infinite series24
1.3.c Convergence of a double series25
1.3.d Conditionally convergent series, absolutely convergent series.26
1.3.e Series of functions29
1.4 Power series, analytic functions30
1.4.a Taylor formulas31
1.4.b Some numerical illustrations32
1.4.c Radius of convergence of a power series34
1.4.d Analytic functions35
1.5 A quick look at asymptotic and divergent series37
1.5.a Asymptotic series37
1.5.b Divergent series and asymptotic expansions38
Exercises43
Problem46
Solutions47
2 Measure theory and the Lebesgue integral51
2.1 The integral according to Mr. Riemann51
2.1.a Riemann sums51
2.1.b Limitations of Riemann's definition54
2.2 The integral according to Mr. Lebesgue54
2.2.a Principle of the method55
2.2.b Borel subsets57
2.2.c Lebesgue measure59
2.2.d The Lebesgue σ-algebra60
2.2.e Negligible sets61
2.2.f Lebesgue measure on ?62
2.2.g Definition of the Lebesgue integral63
2.2.h Functions zero almost everywhere, space L166
2.2.i And today?67
Exercises68
Solutions71
3 Integral calculus73
3.1 Integrability in practice73
3.1.a Standard functions73
3.1.b Comparison theorems74
3.2 Exchanging integrals and limits or series75
3.3 Integrals with parameters77
3.3.a Continuity of functions defined by integrals77
3.3.b Differentiating under the integral sign78
3.3.c Case of parameters appearing in the integration range78
3.4 Double and multiple integrals79
3.5 Change of variables81
Exercises83
Solutions85
4 Complex Analysis Ⅰ87
4.1 Holomorphic functions87
4.1.a Definitions88
4.1.b Examples90
4.1.c The operators ?/?z and ?/??91
4.2 Cauchy's theorem93
4.2.a Path integration93
4.2.b Integrals along a circle95
4.2.c Winding number96
4.2.d Various forms of Cauchy's theorem96
4.2.e Application99
4.3 Properties of holomorphic functions99
4.3.a The Cauchy formula and applications99
4.3.b Maximum modulus principle104
4.3.c Other theorems105
4.3.d Classification of zero sets of holomorphic functions106
4.4 Singularities of a function108
4.4.a Classification of singularities108
4.4.b Meromorphic functions110
4.5 Laurent series111
4.5.a Introduction and definition111
4.5.b Examples of Laurent series113
4.5.c The Residue theorem114
4.5.d Practical computations of residues116
4.6 Applications to the computation of horrifying integrals or ghastly sums117
4.6.a Jordan's lemmas117
4.6.b Integrals on ? of a rational function118
4.6.c Fourier integrals120
4.6.d Integral on the unit circle of a rational function121
4.6.e Computation of infinite sums122
Exercises125
Problem128
Solutions129
5 Complex Analysis Ⅱ135
5.1 Complex logarithm; multivalued functions135
5.1.a The complex logarithms135
5.1.b The square root function137
5.1.c Multivalued functions, Riemann surfaces137
5.2 Harmonic functions139
5.2.a Definitions139
5.2.b Properties140
5.2.c A trick to find f knowing u142
5.3 Analytic continuation144
5.4 Singularities at infinity146
5.5 The saddle point method148
5.5.a The general saddle point method149
5.5.b The real saddle point method152
Exercises153
Solutions154
6 Conformal maps155
6.1 Conformal maps155
6.1.a Preliminaries155
6.1.b The Riemann mapping theorem157
6.1.c Examples of conformal maps158
6.1.d The Schwarz-Christoffel transformation161
6.2 Applications to potential theory163
6.2.a Application to electrostatics165
6.2.b Application to hydrodynamics167
6.2.c Potential theory, lightning rods, and percolation169
6.3 Dirichlet problem and Poisson kernel170
Exercises174
Solutions176
7 Distributions Ⅰ179
7.1 Physical approach179
7.1.a The problem of distribution of charge179
7.1.b The problem of momentum and forces during an elastic shock181
7.2 Definitions and examples of distributions182
7.2.a Regular distributions184
7.2.b Singular distributions185
7.2.c Support of a distribution187
7.2.d Other examples187
7.3 Elementary properties. Operations188
7.3.a Operations on distributions188
7.3.b Derivative of a distribution191
7.4 Dirac and its derivatives193
7.4.a The Heaviside distribution193
7.4.b Multidimensional Dirac distributions194
7.4.c The distribution δ′196
7.4.d Composition of δ with a function198
7.4.e Charge and current densities199
7.5 Derivation of a discontinuous function201
7.5.a Derivation of a function discontinuous at a point201
7.5.b Derivative of a function with discontinuity along a surface ?204
7.5.c Laplacian of a function discontinuous along a surface ?206
7.5.d Application: laplacian of 1/r in 3-space207
7.6 Convolution209
7.6.a The tensor product of two functions209
7.6.b The tensor product of distributions209
7.6.c Convolution of two functions211
7.6.d "Fuzzy" measurement213
7.6.e Convolution of distributions214
7.6.f Applications215
7.6.g The Poisson equation216
7.7 Physical interpretation of convolution operators217
7.8 Discrete convolution220
8 Distributions Ⅱ223
8.1 Cauchy principal value223
8.1.a Definition223
8.1.b Application to the computation of certain integrals224
8.1.c Feynman's notation225
8.1.d Kramers-Kronig relations227
8.1.e A few equations in the sense of distributions229
8.2 Topology in ?230
8.2.a Weak convergence in ?230
8.2.b Sequences of functions converging to δ231
8.2.c Convergence in ? and convergence in the sense of functions234
8.2.d Regularization of a distribution234
8.2.e Continuity of convolution235
8.3 Convolution algebras236
8.4 Solving a differential equation with initial conditions238
8.4.a First order equations238
8.4.b The case of the harmonic oscillator239
8.4.c Other equations of physical origin240
Exercises241
Problem244
Solutions245
9 Hilbert spaces; Fourier series249
9.1 Insufficiency of vector spaces249
9.2 Pre-Hilbert spaces251
9.2.a The finite-dimensional case254
9.2.b Projection on a finite-dimensional subspace254
9.2.c Bessel inequality256
9.3 Hilbert spaces256
9.3.a Hilbert basis257
9.3.b The e2 space261
9.3.c The space L2 [0,a]262
9.3.d The L2(?) space263
9.4 Fourier series expansion264
9.4.a Fourier coefficients of a function264
9.4.b Mean-square convergence265
9.4.c Fourier series of a function f ∈ L1 [0,a]266
9.4.d Pointwise convergence of the Fourier series267
9.4.e Uniform convergence of the Fourier series269
9.4.f The Gibbs phenomenon270
Exercises270
Problem271
Solutions272
10 Fourier transform of functions277
10.1 Fourier transform of a function in L1277
10.1.a Definition278
10.1.b Examples279
10.1.c The L1 space279
10.1.d Elementary properties280
10.1.e Inversion282
10.1.f Extension of the inversion formula284
10.2 Properties of the Fourier transform285
10.2.a Transpose and translates285
10.2.b Dilation286
10.2.c Derivation286
10.2.d Rapidly decaying functions288
10.3 Fourier transform of a function in L2288
10.3.a The space ?289
10.3.b The Fourier transform in L2290
10.4 Fourier transform and convolution292
10.4.a Convolution formula292
10.4.b Cases of the convolution formula293
Exercises295
Solutions296
11 Fourier transform of distributions299
11.1 Definition and properties299
11.1.a Tempered distributions300
11.1.b Fourier transform of tempered distributions301
11.1.c Examples303
11.1.d Higher-dimensional Fourier transforms305
11.1.e Inversion formula306
11.2 The Dirac comb307
11.2.a Definition and properties307
11.2.b Fourier transform of a periodic function308
11.2.c Poisson summation formula309
11.2.d Application to the computation of series310
11.3 The Gibbs phenomenon311
11.4 Application to physical optics314
11.4.a Link between diaphragm and diffraction figure314
11.4.b Diaphragm made of infinitely many infinitely narrow slits315
11.4.c Finite number of infinitely narrow slits316
11.4.d Finitely many slits with finite width318
11.4.e Circular lens320
11.5 Limitations of Fourier analysis and wavelets321
Exercises324
Problem325
Solutions326
12 The Laplace transform331
12.1 Definition and integrability331
12.1.a Definition332
12.1.b Integrability333
12.1.c Properties of the Laplace transform336
12.2 Inversion336
12.3 Elementary properties and examples of Laplace transforms338
12.3.a Translation338
12.3.b Convolution339
12.3.c Differentiation and integration339
12.3.d Examples341
12.4 Laplace transform of distributions342
12.4.a Definition342
12.4.b Properties342
12.4.c Examples344
12.4.d The z-transform344
12.4.e Relation between Laplace and Fourier transforms345
12.5 Physical applications, the Cauchy problem346
12.5.a Importance of the Cauchy problem346
12.5.b A simple example347
12.5.c Dynamics of the electromagnetic field without sources348
Exercises351
Solutions352
13 Physical applications of the Fourier transform355
13.1 Justification of sinusoidal regime analysis355
13.2 Fourier transform of vector fields: longitudinal and transverse fields358
13.3 Heisenberg uncertainty relations359
13.4 Analytic signals365
13.5 Autocorrelation of a finite energy function368
13.5.a Definition368
13.5.b Properties368
13.5.c Intercorrelation369
13.6 Finite power functions370
13.6.a Definitions370
13.6.b Autocorrelation370
13.7 Application to optics: the Wiener-Khintchine theorem371
Exercises375
Solutions376
14 Bras, kets, and all that sort of thing377
14.1 Reminders about finite dimension377
14.1.a Scalar product and representation theorem377
14.1.b Adjoint378
14.1.c Symmetric and hermitian endomorphisms379
14.2 Kets and bras379
14.2.a Kets ?> ∈ H379
14.2.b Bras <? ∈ H′380
14.2.c Generalized bras382
14.2.d Generalized kets383
14.2.e Id = ∑n ?n> <?n?384
14.2.f Generalized basis385
14.3 Linear operators387
14.3.a Operators387
14.3.b Adjoint389
14.3.c Bounded operators, closed operators, closable operators390
14.3.d Discrete and continuous spectra391
14.4 Hermitian operators; self-adjoint operators393
14.4.a Definitions394
14.4.b Eigenvectors396
14.4.c Generalized eigenvectors397
14.4.d "Matrix" representation398
14.4.e Summary of properties of the operators P and X401
Exercises403
Solutions404
15 Green functions407
15.1 Generalities about Green functions407
15.2 A pedagogical example: the harmonic oscillator409
15.2.a Using the Laplace transform410
15.2.b Using the Fourier transform410
15.3 Electromagnetism and the d'Alembertian operator414
15.3.a Computation of the advanced and retarded Green functions414
15.3.b Retarded potentials418
15.3.c Covariant expression of advanced and retarded Green functions421
15.3.d Radiation421
15.4 The heat equation422
15.4.a One-dimensional case423
15.4.b Three-dimensional case426
15.5 Quantum mechanics427
15.6 Klein-Gordon equation429
Exercises432
16 Tensors433
16.1 Tensors in affine space433
16.1.a Vectors433
16.1.b Einstein convention435
16.1.c Linear forms436
16.1.d Linear maps438
16.1.e Lorentz transformations439
16.2 Tensor product of vector spaces: tensors439
16.2.a Existence of the tensor product of two vector spaces439
16.2.b Tensor product of linear forms: tensors of type (0 2)441
16.2.c Tensor product of vectors: tensors of type (2 0)443
16.2.d Tensor product of a vector and a linear form: linear maps or (1 1)-tensors444
16.2.e Tensors of type (p q)446
16.3 The metric, or, how to raise and lower indices447
16.3.a Metric and pseudo-metric447
16.3.b Natural duality by means of the metric449
16.3.c Gymnastics: raising and lowering indices450
16.4 Operations on tensors453
16.5 Change of coordinates455
16.5.a Curvilinear coordinates455
16.5.b Basis vectors456
16.5.c Transformation of physical quantities458
16.5.d Transformation of linear forms459
16.5.e Transformation of an arbitrary tensor field460
16.5.f Conclusion461
Solutions462
17 Differential forms463
17.1 Exterior algebra463
17.1.a 1-forms463
17.1.b Exterior 2-forms464
17.1.c Exterior k-forms465
17.1.d Exterior product467
17.2 Differential forms on a vector space469
17.2.a Definition469
17.2.b Exterior derivative470
17.3 Integration of differential forms471
17.4 Poincaré's theorem474
17.5 Relations with vector calculus: gradient, divergence, curl476
17.5.a Differential forms in dimension 3476
17.5.b Existence of the scalar electrostatic potential477
17.5.c Existence of the vector potential479
17.5.d Magnetic monopoles480
17.6 Electromagnetism in the language of differential forms 480484
Problem485
Solution489
18 Groups and group representations489
18.1 Groups489
18.2 Linear representations of groups491
18.3 Vectors and the group SO(3)492
18.4 The group SU(2) and spinors497
18.5 Spin and Riemann sphere503
Exercises505
19 Introduction to probability theory509
19.1 Introduction510
19.2 Basic definitions512
19.3 Poincaré formula516
19.4 Conditional probability517
19.5 Independent events519
20 Random variables521
20.1 Random variables and probability distributions521
20.2 Distribution function and probability density524
20.2.a Discrete random variables526
20.2.b (Absolutely) continuous random variables526
20.3 Expectation and variance527
20.3.a Case of a discrete r.v.527
20.3.b Case of a continuous r.v.528
20.4 An example: the Poisson distribution530
20.4.a Particles in a confined gas530
20.4.b Radioactive decay531
20.5 Moments of a random variable532
20.6 Random vectors534
20.6.a Pair of random variables534
20.6.b Independent random variables537
20.6.c Random vectors538
20.7 Image measures539
20.7.a Case of a single random variable539
20.7.b Case of a random vector540
20.8 Expectation and characteristic function540
20.8.a Expectation of a function of random variables540
20.8.b Moments, variance541
20.8.c Characteristic function541
20.8.d Generating function543
20.9 Sum and product of random variables543
20.9.a Sum of random variables543
20.9.b Product of random variables546
20.9.c Example: Poisson distribution547
20.10 Bienaymé-Tchebychev inequality547
20.10.a Statement547
20.10.b Application: Buffon's needle549
20.11 Independance, correlation, causality550
21 Convergence of random variables: central limit theorem553
21.1 Various types of convergence553
21.2 The law of large numbers555
21.3 Central limit theorem556
Exercises560
Problems563
Solutions564
Appendices573
A Reminders concerning topology and normed vector spaces573
A.1 Topology, topological spaces573
A.2 Normed vector spaces577
A.2.a Norms, seminorms577
A.2.b Balls and topology associated to the distance578
A.2.c Comparison of sequences580
A.2.d Bolzano-Weierstrass theorems581
A.2.e Comparison of norms581
A.2.f Norm of a linear map583
Exercise583
Solution584
B Elementary reminders of differential calculus585
B.1 Differential of a real-valued function585
B.1.a Functions of one real variable585
B.1.b Differential of a function f : ?n → ?586
B.1.c Tensor notation587
B.2 Differential of map with values in ?p587
B.3 Lagrange multipliers588
Solution591
C Matrices593
C.1 Duality593
C.2 Application to matrix representation594
C.2.a Matrix representing a family of vectors594
C.2.b Matrix of a linear map594
C.2.c Change of basis595
C.2.d Change of basis formula595
C.2.e Case of an orthonormal basis596
D A few proofs597
Tables609
Fourier transforms609
Laplace transforms613
Probability laws616
Further reading617
References621
Portraits627
Sidebars629
Index631