图书介绍
人工智能 一种现代的方法 原书第3版 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (美)拉塞尔,(美)诺维格著 著
- 出版社: 北京:清华大学出版社
- ISBN:9787302252955
- 出版时间:2011
- 标注页数:1132页
- 文件大小:382MB
- 文件页数:1150页
- 主题词:人工智能-高等学校-教材-英文
PDF下载
下载说明
人工智能 一种现代的方法 原书第3版 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Ⅰ Artificial Intelligence1
1 Introduction1
1.1 What Is AI?1
1.2 The Foundations of Artificial Intelligence5
1.3 The History of Artificial Intelligence16
1.4 The State of the Art28
1.5 Summary,Bibliographical and Historical Notes,Exercises29
2 Intelligent Agents34
2.1 Agents and Environments34
2.2 Good Behavior:The Concept of Rationality36
2.3 The Nature of Environments40
2.4 The Structure of Agents46
2.5 Summary,Bibliographical and Historical Notes,Exercises59
Ⅱ Problem-solving64
3 Solving Problems by Searching64
3.1 Problem-Solving Agents64
3.2 Example Problems69
3.3 Searching for Solutions75
3.4 Uninformed Search Strategies81
3.5 Informed(Heuristic)Search Strategies92
3.6 Heuristic Functions102
3.7 Summary,Bibliographical and Historical Notes,Exercises108
4 Beyond Classical Search120
4.1 Local Search Algorithms and Optimization Problems120
4.2 Local Search in Continuous Spaces129
4.3 Searching with Nondeterministic Actions133
4.4 Searching with Partial Observations138
4.5 Online SearchAgents and Unknown Environments147
4.6 Summary,Bibliographical and Historical Notes,Exercises153
5 Adversarial Search161
5.1 Games161
5.2 Optimal Decisions in Games163
5.3 Alpha-Beta Pruning167
5.4 Imperfect Real-Time Decisions171
5.5 Stochastic Games177
5.6 Partially Observable Games180
5.7 State-of-the-Art Game Programs185
5.8 Alternative Approaches187
5.9 Summary,Bibliographical and Historical Notes,Exercises189
6 Constraint Satisfaction Problems202
6.1 Defining Constraint Satisfaction Problems202
6.2 Constraint Propagation:Inference in CSPs208
6.3 Backtracking Search for CSPs214
6.4 Local Search for CSPs220
6.5 The Structure of Problems222
6.6 Summary,Bibliographical and Historical Notes,Exercises227
Ⅲ Knowledge,reasoning,and planning234
7 Logical Agents234
7.1 Knowledge-Based Agents235
7.2 The Wumpus World236
7.3 Logic240
7.4 Propositional Logic:A Very Simple Logic243
7.5 Propositional Theorem Proving249
7.6 Effective Propositional Model Checking259
7.7 Agents Based on Propositional Logic265
7.8 Summary,Bibliographical and Historical Notes,Exercises274
8 First-Order Logic285
8.1 Representation Revisited285
8.2 Syntax and Semantics of First-Order Logic290
8.3 Using First-Order Logic300
8.4 Knowledge Engineering in First-Order Logic307
8.5 Summary,Bibliographical and Historical Notes,Exercises313
9 Inference in First-Order Logic322
9.1 Propositional vs.First-Order Inference322
9.2 Unification and Lifting325
9.3 Forward Chaining330
9.4 Backward Chaining337
9.5 Resolution345
9.6 Summary,Bibliographical and Historical Notes,Exercises357
10 Classical Planning366
10.1 Definition of Classical Planning366
10.2 Algorithms for Planning as State-Space Search373
10.3 Planning Graphs379
10.4 Other Classical Planning Approaches387
10.5 Analysis of Planning Approaches392
10.6 Summary,Bibliographical and Historical Notes,Exercises393
11 Planning and Acting in the Real World401
11.1 Time,Schedules,and Resources401
11.2 Hierarchical Planning406
11.3 Planning and Acting in Nondeterministic Domains415
11.4 Multiagent Planning425
11.5 Summary,Bibliographical and Historical Notes,Exercises430
12 Knowledge Representation437
12.1 Ontological Engineering437
12.2 Categories and Objects440
12.3 Events446
12.4 Mental Events and Mental Objects450
12.5 Reasoning Systems for Categories453
12.6 Reasoning with Default Information458
12.7 The Internet Shopping World462
12.8 Summary,Bibliographical and Historical Notes,Exercises467
Ⅳ Uncertain knowledge and reasoning480
13 Quantifying Uncertainty480
13.1 Acting under Uncertainty480
13.2 Basic Probability Notation483
13.3 Inference Using Full Joint Distributions490
13.4 Independence494
13.5 Bayes’Rule and Its Use495
13.6 The Wumpus World Revisited499
13.7 Summary,Bibliographical and Historical Notes,Exercises503
14 Probabilistic Reasoning510
14.1 Representing Knowledge in an Uncertain Domain510
14.2 The Semantics of Bayesian Networks513
14.3 Efficient Representation of Conditional Distributions518
14.4 Exact Inference in Bayesian Networks522
14.5 Approximate Inference in Bayesian Networks530
14.6 Relational and First-Order Probability Models539
14.7 Other Approaches to Uncertain Reasoning546
14.8 Summary,Bibliographical and Historical Notes,Exercises551
15 Probabilistic Reasoning over Time566
15.1 Time and Uncertainty566
15.2 Inference in Temporal Models570
15.3 Hidden Markov Models578
15.4 Kalman Filters584
15.5 Dynamic Bayesian Networks590
15.6 Keeping Track of Many Objects599
15.7 Summary,Bibliographical and Historical Notes,Exercises603
16 Making Simple Decisions610
16.1 Combining Beliefs and Desires under Uncertainty610
16.2 The Basis of Utility Theory611
16.3 Utility Functions615
16.4 Multiattribute Utility Functions622
16.5 Decision Networks626
16.6 The Value of Information628
16.7 Decision-Theoretic Expert Systems633
16.8 Summary,Bibliographical and Historical Notes,Exercises636
17 Making Complex Decisions645
17.1 Sequential Decision Problems645
17.2 Value Iteration652
17.3 Policy Iteration656
17.4 Partially Observable MDPs658
17.5 Decisions with Multiple Agents:Game Theory666
17.6 Mechanism Design679
17.7 Summary,Bibliographical and Historical Notes,Exercises684
Ⅴ Learning693
18 Learning from Examples693
18.1 Forms of Learning693
18.2 Supervised Learning695
18.3 Learning Decision Trees697
18.4 Evaluating and Choosing the Best Hypothesis708
18.5 The Theory of Leaming713
18.6 Regression and Classification with Linear Models717
18.7 Artificial Neural Networks727
18.8 Nonparametric Models737
18.9 Support Vector Machines744
18.10 Ensemble Learning748
18.11 Practical Machine Learning753
18.12 Summary,Bibliographical and Historical Notes,Exercises757
19 Knowledge in Learning768
19.1 A Logical Formulation of Learning768
19.2 Knowledge in Learning777
19.3 Explanation-Based Learning780
19.4 Learning Using Relevance Information784
19.5 Inductive Logic Programming788
19.6 Summary,Bibliographical and Historical Notes,Exercises797
20 Learning Probabilistic Models802
20.1 Statistical Learning802
20.2 Learning with Complete Data806
20.3 Learning with Hidden Variables:The EM Algorithm816
20.4 Summary,Bibliographical and Historical Notes,Exercises825
21 Reinforcement Learning830
21.1 Introduction830
21.2 Passive Reinforcement Learning832
21.3 Active Reinforcement Learning839
21.4 Generalization in Reinforcement Learning845
21.5 Policy Search848
21.6 Applications of Reinforcement Learning850
21.7 Summary,Bibliographical and Historical Notes,Exercises853
Ⅵ Communicating,perceiving,and acting860
22 Natural Language Processing860
22.1 Language Models860
22.2 Text Classification865
22.3 Information Retrieval867
22.4 Information Extraction873
22.5 Summary,Bibliographical and Historical Notes,Exercises882
23 Natural Language for Communication888
23.1 Phrase Structure Grammars888
23.2 Syntactic Analysis(Parsing)892
23.3 Augmented Grammars and Semantic Interpretation897
23.4 Machine Translation907
23.5 Speech Recognition912
23.6 Summary,Bibliographical and Historical Notes,Exercises918
24 Perception928
24.1 Image Formation929
24.2 Early Image-Processing Operations935
24.3 Object Recognition by Appearance942
24.4 Reconstructing the 3D World947
24.5 Object Recognition from Structural Information957
24.6 Using Vision961
24.7 Summary,Bibliographical and Historical Notes,Exercises965
25 Robotics971
25.1 Introduction971
25.2 Robot Hardware973
25.3 Robotic Perception978
25.4 Planning to Move986
25.5 Planning Uncertain Movements993
25.6 Moving997
25.7 Robotic Software Architectures1003
25.8 Application Domains1006
25.9 Summary,Bibliographical and Historical Notes,Exercises1010
Ⅶ Conclusions1020
26 Philosophical Foundations1020
26.1 Weak AI:Can Machines Act Intelligently?1020
26.2 Strong AI:Can Machines Really Think?1026
26.3 The Ethics and Risks of Developing Artificial Intelligence1034
26.4 Summary,Bibliographical and Historical Notes,Exercises1040
27 AI:ThePresentandFuture1044
27.1 Agent Components1044
27.2 Agent Architectures1047
27.3 Are We Going in the Right Direction?1049
27.4 What If AI Does Succeed?1051
A Mathematical background1053
A.1 Complexity Analysis and O()Notation1053
A.2 Vectors,Matrices,and Linear Algebra1055
A.3 Probability Distributions1057
B Notes on Languages and Algorithms1060
B.1 Defining Languages with Backus-Naur Form(BNF)1060
B.2 Describing Algorithms with Pseudocode1061
B.3 Online Help1062
Bibliography1063
Index1095