图书介绍

可压缩流与欧拉方程 英文版 Compressible Flow and Euler's EquationsPDF|Epub|txt|kindle电子书版本网盘下载

可压缩流与欧拉方程 英文版 Compressible Flow and Euler's Equations
  • DemetriosChristodoulou,Shuan 著
  • 出版社: 北京:高等教育出版社
  • ISBN:9787040400984
  • 出版时间:2014
  • 标注页数:582页
  • 文件大小:59MB
  • 文件页数:602页
  • 主题词:可压缩流-英文;欧拉方程-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

可压缩流与欧拉方程 英文版 Compressible Flow and Euler's EquationsPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Compressible Flow and Non-linear Wave Equations1

1.1 Euler's Equations1

1.2 Irrotational Flow and the Nonlinear Wave Equation2

1.3 The Equation of Variations and the Acoustical Metric5

1.4 The Fundamental Variations6

2 The Basic Geometric Construction11

2.1 Null Foliation Associated with the Acoustical Metric11

2.1.1 Galilean Spacetime11

2.1.2 Null Foliation and Acoustical Coordinates12

2.2 A Geometric Interpretation for Function H19

3 The Acoustical Structure Equations21

3.1 The Acoustical Structure Equations21

3.2 The Derivatives of the Rectangular Components of L and ?33

4 The Acoustical Curvature39

4.1 Expressions for Curvature Tensor39

4.2 Regularity for the Acoustical Structure Equations asμ→042

4.3 A Remark45

5 The Fundamental Energy Estimate47

5.1 Bootstrap Assumptions.Statement of the Theorem47

5.2 The Multiplier Fields K0 and K1.The Associated Energy-Momentum Density Vectorfields50

5.3 The Error Integrals60

5.4 The Estimates for the Error Integrals63

5.5 Treatment of the Integral Inequalities Depending on t and u.Completion of the Proof76

6 Construction of Commutation Vectorfields83

6.1 Commutation Vectorfields and Their Deformation Tensors83

6.2 Preliminary Estimates for the Deformation Tensors88

7 Outline of the Derived Estimates of Each Order101

7.1 The Inhomogeneous Wave Equations for the Higher Order Variations.The Recursion Formula for the Source Functions101

7.2 The First Term in ?n104

7.3 The Estimates of the Contribution of the First Term in ?n to the Error Integrals109

8 Regularization of the Propagation Equation for ?trx.Estimates for the Top Order Angular Derivatives of x129

8.1 Preliminary129

8.1.1 Regularization of The Propagation Equation129

8.1.2 Propagation Equations for Higher Order Angular Derivatives133

8.1.3 Elliptic Theory on St,u143

8.1.4 Preliminary Estimates for the Solutions of the Propagation Equations151

8.2 Crucial Lemmas Concerning the Behavior of μ155

8.3 The Actual Estimates for the Solutions of the Propagation Equations174

9 Regularization of the Propagation Equation for ?μ.Estimates for the Top Order Spatial Derivatives of μ185

9.1 Regularization of the Propagation Equation185

9.2 Propagation Equations for the Higher Order Spatial Derivatives191

9.3 Elliptic Theory on St,u202

9.4 The Estimates for the Solutions of the Propagation Equations214

10 Control of the Angular Derivatives of the First Derivatives of the xi.Assumptions and Estimates in Regard to x227

10.1 Preliminary227

10.2 Estimates for yi238

10.2.1 L∞ Estimates for Rik…Ri1yj239

10.2.2 L2 Estimates for Rik…Ri1yj242

10.3 Bounds for the quantities Ql and Pl251

10.3.1 Estimates for Ql251

10.3.2 Estimates for Pl262

11 Control of the Spatial Derivatives of the First Derivatives of the xi.Assumptions and Estimates in Regard to μ269

11.1 Estimates for T?i269

11.1.1 Basic Lemmas269

11.1.2 L∞ Estimates for T?i287

11.1.3 L2 Estimates for T?i293

11.2Bounds for Quantities Q′m,l and P′m,l305

11.2.1 Bounds for Q′m,l306

11.2.2 Bounds for P′m,l316

12 Recovery of the Acoustical Assumptions.Estimates for Up to the Next to the Top Order Angular Derivatives of x and Spatial Derivatives ofμ327

12.1 Estimates for λi,y′i,yi and r.Establishing the Hypothesis HO327

12.2 The Coercivity Hypothesis H1,H2 and H2′.Estimates for x′332

12.3 Estimates for Higher Order Derivatives of x′and μ351

13 Derivation of the Basic Properties of μ381

14 The Error Estimates Involving the Top Order Spatial Derivatives of the Acoustical Entities397

14.1 The Error Terms Involving the Top Order Spatial Derivatives of the Acoustical Entities397

14.2 The Borderline Error Integrals404

14.3 Assumption J405

14.4 The Borderline Estimates Associated to K0408

14.4.1 Estimates for the Contribution of (14.56)408

14.4.2 Estimates for the Contribution of (14.57)417

14.5 The Borderline Estimates Associated to K1423

14.5.1 Estimates for the Contribution of(14.56)423

14.5.2 Estimates for the Contribution of(14.57)446

15 The Top Order Energy Estimates463

15.1 Estimates Associated to K1463

15.2 Estimates Associated to K0477

16 The Descent Scheme489

17 The Isoperimetric Inequality.Recovery of Assumption J.Recovery of the Bootstrap Assumption Proof of the Main Theorem503

17.1 Recovery of J—Preliminary503

17.2 The Isoperimetric Inequality505

17.3 Recovery of J—Completion509

17.4 Recovery of the Final Bootstrap Assumption510

17.5 Completion of the Proof of the Main Theorem511

18 Sufficient Conditions on the Initial Data for the Formation of a Shock in the Evolution521

19 The Structure of the Boundary of the Domain of the Maximal Solution533

19.1 Nature of Singular Hypersurface in Acoustical Differential Structure533

19.1.1 Preliminary533

19.1.2 Intrinsic View Point535

19.1.3 Invariant Curves537

19.1.4 Extrinsic View Point539

19.2 The Trichotomy Theorem for Past Null Geodesics Ending at Singular Boundary543

19.2.1 Hamiltonian Flow543

19.2.2 Asymptotic Behavior545

19.3 Transformation of Coordinates562

19.4 How H Looks Like in Rectangular Coordinates in Galilean Spacetime575

References581

热门推荐