图书介绍

数学分析原理 英文版·第3版PDF|Epub|txt|kindle电子书版本网盘下载

数学分析原理 英文版·第3版
  • (美)鲁丁著 著
  • 出版社: McGraw-Hill
  • ISBN:7111133063
  • 出版时间:2004
  • 标注页数:342页
  • 文件大小:11MB
  • 文件页数:352页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

数学分析原理 英文版·第3版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 The Real and Complex Number Systems1

Introduction1

Ordered Sets3

Fields5

The Real Field8

The Extended Real Number System11

The Complex Field12

Euclidean Spaces16

Appendix17

Exercises21

Chapter 2 Basic Topology24

Finite,Countable,and Uncountable Sets24

Metric Spaces30

Compact Sets36

Perfect Sets41

Connected Sets42

Exercises43

Chapter 3 Numerical Sequences and Series47

Convergent Sequences47

Subsequences51

Cauchy Sequences52

Upper and Lower Limits55

Some Special Sequences57

Series58

Series of Nonnegative Terms61

The Number e63

The Root and Ratio Tests65

Power Series69

Summation by Parts70

Absolute Convergence71

Addition and Multiplication of Series72

Rearrangements75

Exercises78

Chapter 4 Continuity83

Limits of Functions83

Continuous Functions85

Continuity and Compactness89

Continuity and Connectedness93

Discontinuities94

Monotonic Functions95

Infinite Limits and Limits at Infinity97

Exercises98

Chapter 5 Differentiation103

The Derivative of a Real Function103

Mean Value Theorems107

The Continuity of Derivatives108

L'Hospital's Rule109

Derivatives of Higher Order110

Taylor's Theorem110

Differentiation of Vector-valued Functions111

Exercises114

Chapter 6 The Riemann-Stieltjes Integral120

Definition and Existence of the Integral120

Properties of the Integral128

Integration and Differentiation133

Integration of Vector-valued Functions135

Rectifiable Curves136

Exercises138

Chapter 7 Sequences and Series of Functions143

Discussion of Main Problem143

Uniform Convergence147

Uniform Convergence and Continuity149

Uniform Convergence and Integration151

Uniform Convergence and Differentiation152

Equicontinuous Families of Functions154

The Stone-Weierstrass Theorem159

Exercises165

Chapter 8 Some Special Functions172

Power Series172

The Exponential and Logarithmic Functions178

The Trigonometric Functions182

The Algebraic Completeness of the Complex Field184

Fourier Series185

The Gamma Function192

Exercises196

Chapter 9 Functions of Several Variables204

Linear Transformations204

Differentiation211

The Contraction Principle220

The Inverse Function Theorem221

The Implicit Function Theorem223

The Rank Theorem228

Determinants231

Derivatives of Higher Order235

Differentiation of Integrals236

Exercises239

Chapter 10 Integration of Differential Forms245

Integration245

Primitive Mappings248

Partitions of Unity251

Change of Variables252

Differential Forms253

Simplexes and Chains266

Stokes'Theorem273

Closed Forms and Exact Forms275

Vector Analysis280

Exercises288

Chapter 11 The Lebesgue Theory300

Set Functions300

Construction of the Lebesgue Measure302

Measure Spaces310

Measurable Functions310

Simple Functions313

Integration314

Comparison with the Riemann Integral322

Integration of Complex Functions325

Functions of Class ?2325

Exercises332

Bibliography335

List of Special Symbols337

Index339

热门推荐