图书介绍

激光原理 英文PDF|Epub|txt|kindle电子书版本网盘下载

激光原理 英文
  • (意)斯维尔特(ORAZIOSVELTO)著 著
  • 出版社: 北京:世界图书北京出版公司
  • ISBN:9787510077883
  • 出版时间:2014
  • 标注页数:620页
  • 文件大小:95MB
  • 文件页数:641页
  • 主题词:激光理论-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

激光原理 英文PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1.Introductory Concepts1

1.1.Spontaneous and Stimulated Emission,Absorption1

1.2.The Laser Idea4

1.3.Pumping Schemes6

1.4.Properties of Laser Beams8

1.4.1.Monochromaticity9

1.4.2.Coherence9

1.4.3.Directionality10

1.4.4.Brightness11

1.4.5.Short Time Duration13

1.5.Types of Lasers14

1.6.Organization of the Book14

Problems15

2.Interaction of Radiation with Atoms and Ions17

2.1.Introduction17

2.2.Summary of Blackbody Radiation Theory17

2.2.1.Modes of a Rectangular Cavity19

2.2.2.The Rayleigh-Jeans and Planck Radiation Formula22

2.2.3.Planck's Hypothesis and Field Quantization24

2.3.Spontaneous Emission26

2.3.1.Semiclassical Approach26

2.3.2.Quantum Electrodynamics Approach30

2.3.3.Allowed and Forbidden Transitions31

2.4.Absorption and Stimulated Emission32

2.4.1.Rates of Absorption and Stimulated Emission32

2.4.2.Allowed and Forbidden Transitions36

2.4.3.Transition Cross Section,Absorption and Gain Coefficient37

2.4.4.Einstein Thermodynamic Treatment41

2.5.Line Broadening Mechanisms43

2.5.1.Homogeneous Broadening43

2.5.2.Inhomogeneous Broadening47

2.5.3.Concluding Remarks49

2.6.Nonradiative Decay and Energy Transfer50

2.6.1.Mechanisms of Nonradiative Decay50

2.6.2.Combined Effects of Radiative and Nonradiative Processes56

2.7.Degenerate or Strongly Coupled Levels58

2.7.1.Degenerate Levels58

2.7.2.Strongly Coupled Levels60

2.8.Saturation64

2.8.1.Saturation of Absorption:Homogeneous Line64

2.8.2.Gain Saturation:Homogeneous Line67

2.8.3.Inhomogeneously Broadened Line69

2.9.Decay of an Optically Dense Medium70

2.9.1.Radiation Trapping71

2.9.2.Amplified Spontaneous Emission71

2.10.Concluding Remarks76

Problems77

References78

3.Energy Levels,Radiative and Nonradiative Transitions in Molecules and Semiconductors81

3.1.Molecules81

3.1.1.Energy Levels81

3.1.2.Level Occupation at Thermal Equilibrium85

3.1.3.Stimulated Transitions87

3.1.4.Rediative and Nonradiative Decay91

3.2.Bulk Semiconductors93

3.2.1.Electronic States93

3.2.2.Density of States97

3.2.3.Level Occupation at Thermal Equilibrium98

3.2.4.Stimulated Transitions101

3.2.5.Absorption and Gain Coefficients104

3.2.6.Spontaneous Emission and Nonradiative Decay110

3.2.7.Concluding Remarks112

3.3.Semiconductor Quantum Wells113

3.3.1.Electronic States113

3.3.2.Density of States116

3.3.3.Level Occupation at Thermal Equilibrium118

3.3.4.Stimulated Transitions119

3.3.5.Absorption and Gain Coefficients121

3.3.6.Strained Quantum Wells125

3.4.Quantum Wires and Quantum Dots126

3.5.Concluding Remarks128

Problems128

References129

4.Ray and Wave Propagation Through Optical Media131

4.1.Introduction131

4.2.Matrix Formulation of Geometrical Optics131

4.3.Wave Reflection and Transmission at a Dielectric Interface137

4.4.Multilayer Dielectric Coatings139

4.5.The Fabry-Perot Intefferometer142

4.5.1.Properties of a Fabry-Perot Interferometer142

4.5.2.The Fabry-Perot Interferometer as a Spectrometer146

4.6.Diffraction Optics in the Paraxial Approximation147

4.7.Gaussian Beams150

4.7.1.Lowest-Order Mode150

4.7.2.Free Space Propagation153

4.7.3.Gaussian Beams and the ABCD Law156

4.7.4.Higher-Order Modes158

4.8.Conclusions159

Problems159

References161

5.Passive Optical Resonators163

5.1.Introduction163

5.2.Eigenmodes and Eigenvalues167

5.3.Photon Lifetime and Cavity Q169

5.4.Stability Condition171

5.5.Stable Resonators175

5.5.1.Resonators with Infinite Aperture175

5.5.1.1.Eigenmodes176

5.5.1.2.Eigenvalues180

5.5.1.3.Standing-and Traveling-Waves in a Two-Mirror Resonator182

5.5.2.Effects of a Finite Aperture183

5.5.3.Dynamically and Mechanically Stable Resonators186

5.6.Unstable Resonators189

5.6.1.Geometrical-Optics Description190

5.6.2.Wave-Optics Description192

5.6.3.Advantages and Disadvantages of Hard-Edge Unstable Resonators196

5.6.4.Variable-Reflectivity Unstable Resonators196

5.7.Concluding Remarks200

Problems200

References203

6.Pumping Processes205

6.1.Introduction205

6.2.Optical Pumpingby an Incoherent Light Source208

6.2.1.Pumping Systems208

6.2.2.Absorption of Pump Light211

6.2.3.Pump Efficiency and Pump Rate213

6.3.Laser Pumping215

6.3.1.Laser Diode Pumps217

6.3.2.Pump Transfer Systems219

6.3.2.1.Longitudinal Pumping219

6.3.2.2.Transverse Pumping224

6.3.3.Pump Rate and Pump Efficiency225

6.3.4.Threshold Pump Power for Four-Level and Quasi-Three-Level Lasers228

6.3.5.Comparison Between Diode-pumping and Lamp-pumping230

6.4.Electrical Pumping232

6.4.1.Electron Impact Excitation236

6.4.1.1.Electron Impact Cross Section237

6.4.2.Thermal and Drift Velocities240

6.4.3.Electron Energy Distribution242

6.4.4.The Ionization Balance Equation245

6.4.5.Scaling Laws for Electrical Discharge Lasers247

6.4.6.Pump Rate and Pump Efficiency248

6.5.Conclusions250

Problems250

References253

7.Continuous Wave Laser Behavior255

7.1.Introduction255

7.2.Rate Equations255

7.2.1.Four-Level Laser256

7.2.2.Quasi-Three-Level Laser261

7.3.Threshold Conditions and Output Power:Four-Level Laser263

7.3.1.Space-Independent Model264

7.3.2.Space-Dependent Model270

7.4.Threshold Condition and Output Power:Quasi-Three-Level Laser279

7.4.1.Space-Independent Model279

7.4.2.Space-Dependent Model280

7.5.Optimum Output Coupling283

7.6.Laser Tuning285

7.7.Reasons for Multimode Oscillation287

7.8.Single-Mode Selection290

7.8.1.Single-Transverse-Mode Selection290

7.8.2.Single-Longitudinal-Mode Selection291

7.8.2.1.Fabry-Perot Etalons as Mode-Selective Elements292

7.8.2.2.Single Mode Selection via Unidirectional Ring Resonators294

7.9 Frequency-Pulling and Limit to Monochromaticity297

7.10.Laser Frequency Fluctuations and Frequency Stabilization300

7.11.Intensity Noise and Intensity Noise Reduction304

7.12.Conclusions306

Problems308

References310

8.Transient Laser Behavior313

8.1.Introduction313

8.2.Relaxation Oscillations313

8.2.1.Linearized Analysis315

8.3.Dynamical Instabilities and Pulsations in Lasers318

8.4.Q-Switching319

8.4.1.Dynamics of the Q-Switching Process319

8.4.2.Methods of Q-Switching321

8.4.2.1.Electro-Optical Q-Switching322

8.4.2.2.Rotating Prisms323

8.4.2.3.Acousto-Optic Q-Switches324

8.4.2.4.Saturable-Absorber Q-Switch325

8.4.3.Operating Regimes328

8.4.4.Theory of Active Q-Switching329

8.5.Gain Switching337

8.6.Mode-Locking339

8.6.1.Frequency-Domain Description340

8.6.2.Time-Domain Picture344

8.6.3.Methods of Mode-Locking346

8.6.3.1.Active Mode-Locking346

8.6.3.2.Passive Mode Locking350

8.6.4.The Role of Cavity Dispersion in Femtosecond Mode-Locked Lasers356

8.6.4.1.Phase-Velocity,Group-Velocity and Group-Delay-Dispersion356

8.6.4.2.Limitation on Pulse Duration due to Group-Delay Dispersion358

8.6.4.3.Dispersion Compensation360

8.6.4.4.Soliton-type of Mode-Locking361

8.6.5.Mode-Locking Regimes and Mode-Locking Systems364

8.7.Cavity Dumping368

8.8.Concluding Remarks369

Problems370

References372

9.Solid-State,Dye,and Semiconductor Lasers375

9.1.Introduction375

9.2.Solid-State Lasers375

9.2.1.The Ruby Laser377

9.2.2.Neodymium Lasers380

9.2.2.1.Nd:YAG380

9.2.2.2.Nd:Glass383

9.2.2.3.Other Crystalline Hosts384

9.2.3.Yb:YAG384

9.2.4.Er:YAG and Yb:Er:glass386

9.2.5.Tm:Ho:YAG387

9.2.6.Fiber Lasers389

9.2.7.Alexandrite Laser391

9.2.8.Titanium Sapphire Laser394

9.2.9.Cr:LISAF and Cr:LICAF396

9.3.Dye Lasers397

9.3.1.Photophysical Properties of Organic Dyes397

9.3.2.Characteristics of Dye Lasers401

9.4.Semiconductor Lasers405

9.4.1.Principle of Semiconductor Laser Operation405

9.4.2.The Homojunction Laser407

9.4.3.The Double-Heterostructure Laser408

9.4.4.Quantum Well Lasers413

9.4.5.Laser Devices and Performances416

9.4.6.Distributed Feedback and Distributed Bragg Reflector Lasers419

9.4.7.Vertical Cavity Surface Emitting Lasers423

9.4.8.Applications of Semiconductor Lasers425

9.5.Conclusions427

Problems427

References429

10.Gas,Chemical,Free Electron,and X-Ray Lasers431

10.1.Introduction431

10.2.Gas Lasers431

10.2.1.Neutral Atom Lasers432

10.2.1.1.Helium-Neon Lasers432

10.2.1.2.Copper Vapor Lasers437

10.2.2.Ion Lasers439

10.2.2.1.Argon Laser439

10.2.2.2.He-Cd Laser442

10.2.3.Molecular Gas Lasers444

10.2.3.1.The CO2 Laser444

10.2.3.2.The CO Laser454

10.2.3.3.The N2 Laser456

10.2.3.4.Excimer Lasers457

10.3.Chemical Lasers461

10.3.1.The HF Laser461

10.4.The Free-Electron Laser465

10.5.X-ray Lasers469

10.6.Concluding Remarks471

Problems471

References473

11.Properties of Laser Beams475

11.1.Introduction475

11.2.Monochromaticity475

11.3.First-Order Coherence476

11.3.1.Degree of Spatial and Temporal Coherence477

11.3.2.Measurement of Spatial and Temporal Coherence480

11.3.3.Relation Between Temporal Coherence and Monochromaticity483

11.3.4.Nonstationary Beams485

11.3.5.Spatial and Temporal Coherence of Single-Mode and Multimode Lasers485

11.3.6.Spatial and Temporal Coherence of a Thermal Light Source488

11.4.Directionality489

11.4.1.Beams with Perfect Spatial Coherence489

11.4.2.Beams with Partial Spatial Coherence491

11.4.3.The M2 Factor and the Spot-Size Parameter of a Multimode Laser Beam492

11.5.Laser Speckle495

11.6.Brightness498

11.7.Statistical Properties of Laser Light and Thermal Light499

11.8.Comparison Between Laser Light and Thermal Light501

Problems503

References504

12.Laser Beam Transformation:Propagation,Amplification,Frequency Conversion,Pulse Compression and Pulse Expansion505

12.1.Introduction505

12.2.Spatial Transformation:Propagation of a Multimode Laser Beam506

12.3.Amplitude Transformation:Laser Amplification507

12.3.1.Examples of Laser Amplifiers:Chirped-Pulse-Amplification512

12.4.Frequency Conversion:Second-Harmonic Generation and Parametric Oscillation516

12.4.1.Physical Picture516

12.4.1.1.Second-Harmonic Generation517

12.4.1.2.Parametric Oscillation524

12.4.2.Analytical Treatment526

12.4.2.1.Parametric Oscillation528

12.4.2.2.Second-Harmonic Generation532

12.5.Transformation in Time:Pulse Compression and Pulse Expansion535

12.5.1.Pulse Compression536

12.5.2.Pulse Expansion541

Problems543

References544

Appendices547

A.Semiclassical Treatment of the Interaction of Radiation with Matter547

B.Lineshape Calculation for Collision Broadening553

C.Simplified Treatment of Amplified Spontaneous Emission557

References560

D.Calculation of the Radiative Transition Rates of Molecular Transitions561

E.Space Dependent Rate Equations565

E.1.Four-Level Laser565

E.2.Quasi-Three-Level Laser571

F.Theory of Mode-Locking:Homogeneous Line575

F.1.Active Mode-Locking575

F.2.Passive Mode-Locking580

References581

G.Propagation of a Laser Pulse Through a Dispersive Medium or a Gain Medium583

References587

H.Higher-Order Coherence589

I.Physical Constants and Useful Conversion Factors593

Answers to Selected Problems595

Index607

热门推荐