图书介绍
激光原理 英文PDF|Epub|txt|kindle电子书版本网盘下载
- (意)斯维尔特(ORAZIOSVELTO)著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510077883
- 出版时间:2014
- 标注页数:620页
- 文件大小:95MB
- 文件页数:641页
- 主题词:激光理论-英文
PDF下载
下载说明
激光原理 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Introductory Concepts1
1.1.Spontaneous and Stimulated Emission,Absorption1
1.2.The Laser Idea4
1.3.Pumping Schemes6
1.4.Properties of Laser Beams8
1.4.1.Monochromaticity9
1.4.2.Coherence9
1.4.3.Directionality10
1.4.4.Brightness11
1.4.5.Short Time Duration13
1.5.Types of Lasers14
1.6.Organization of the Book14
Problems15
2.Interaction of Radiation with Atoms and Ions17
2.1.Introduction17
2.2.Summary of Blackbody Radiation Theory17
2.2.1.Modes of a Rectangular Cavity19
2.2.2.The Rayleigh-Jeans and Planck Radiation Formula22
2.2.3.Planck's Hypothesis and Field Quantization24
2.3.Spontaneous Emission26
2.3.1.Semiclassical Approach26
2.3.2.Quantum Electrodynamics Approach30
2.3.3.Allowed and Forbidden Transitions31
2.4.Absorption and Stimulated Emission32
2.4.1.Rates of Absorption and Stimulated Emission32
2.4.2.Allowed and Forbidden Transitions36
2.4.3.Transition Cross Section,Absorption and Gain Coefficient37
2.4.4.Einstein Thermodynamic Treatment41
2.5.Line Broadening Mechanisms43
2.5.1.Homogeneous Broadening43
2.5.2.Inhomogeneous Broadening47
2.5.3.Concluding Remarks49
2.6.Nonradiative Decay and Energy Transfer50
2.6.1.Mechanisms of Nonradiative Decay50
2.6.2.Combined Effects of Radiative and Nonradiative Processes56
2.7.Degenerate or Strongly Coupled Levels58
2.7.1.Degenerate Levels58
2.7.2.Strongly Coupled Levels60
2.8.Saturation64
2.8.1.Saturation of Absorption:Homogeneous Line64
2.8.2.Gain Saturation:Homogeneous Line67
2.8.3.Inhomogeneously Broadened Line69
2.9.Decay of an Optically Dense Medium70
2.9.1.Radiation Trapping71
2.9.2.Amplified Spontaneous Emission71
2.10.Concluding Remarks76
Problems77
References78
3.Energy Levels,Radiative and Nonradiative Transitions in Molecules and Semiconductors81
3.1.Molecules81
3.1.1.Energy Levels81
3.1.2.Level Occupation at Thermal Equilibrium85
3.1.3.Stimulated Transitions87
3.1.4.Rediative and Nonradiative Decay91
3.2.Bulk Semiconductors93
3.2.1.Electronic States93
3.2.2.Density of States97
3.2.3.Level Occupation at Thermal Equilibrium98
3.2.4.Stimulated Transitions101
3.2.5.Absorption and Gain Coefficients104
3.2.6.Spontaneous Emission and Nonradiative Decay110
3.2.7.Concluding Remarks112
3.3.Semiconductor Quantum Wells113
3.3.1.Electronic States113
3.3.2.Density of States116
3.3.3.Level Occupation at Thermal Equilibrium118
3.3.4.Stimulated Transitions119
3.3.5.Absorption and Gain Coefficients121
3.3.6.Strained Quantum Wells125
3.4.Quantum Wires and Quantum Dots126
3.5.Concluding Remarks128
Problems128
References129
4.Ray and Wave Propagation Through Optical Media131
4.1.Introduction131
4.2.Matrix Formulation of Geometrical Optics131
4.3.Wave Reflection and Transmission at a Dielectric Interface137
4.4.Multilayer Dielectric Coatings139
4.5.The Fabry-Perot Intefferometer142
4.5.1.Properties of a Fabry-Perot Interferometer142
4.5.2.The Fabry-Perot Interferometer as a Spectrometer146
4.6.Diffraction Optics in the Paraxial Approximation147
4.7.Gaussian Beams150
4.7.1.Lowest-Order Mode150
4.7.2.Free Space Propagation153
4.7.3.Gaussian Beams and the ABCD Law156
4.7.4.Higher-Order Modes158
4.8.Conclusions159
Problems159
References161
5.Passive Optical Resonators163
5.1.Introduction163
5.2.Eigenmodes and Eigenvalues167
5.3.Photon Lifetime and Cavity Q169
5.4.Stability Condition171
5.5.Stable Resonators175
5.5.1.Resonators with Infinite Aperture175
5.5.1.1.Eigenmodes176
5.5.1.2.Eigenvalues180
5.5.1.3.Standing-and Traveling-Waves in a Two-Mirror Resonator182
5.5.2.Effects of a Finite Aperture183
5.5.3.Dynamically and Mechanically Stable Resonators186
5.6.Unstable Resonators189
5.6.1.Geometrical-Optics Description190
5.6.2.Wave-Optics Description192
5.6.3.Advantages and Disadvantages of Hard-Edge Unstable Resonators196
5.6.4.Variable-Reflectivity Unstable Resonators196
5.7.Concluding Remarks200
Problems200
References203
6.Pumping Processes205
6.1.Introduction205
6.2.Optical Pumpingby an Incoherent Light Source208
6.2.1.Pumping Systems208
6.2.2.Absorption of Pump Light211
6.2.3.Pump Efficiency and Pump Rate213
6.3.Laser Pumping215
6.3.1.Laser Diode Pumps217
6.3.2.Pump Transfer Systems219
6.3.2.1.Longitudinal Pumping219
6.3.2.2.Transverse Pumping224
6.3.3.Pump Rate and Pump Efficiency225
6.3.4.Threshold Pump Power for Four-Level and Quasi-Three-Level Lasers228
6.3.5.Comparison Between Diode-pumping and Lamp-pumping230
6.4.Electrical Pumping232
6.4.1.Electron Impact Excitation236
6.4.1.1.Electron Impact Cross Section237
6.4.2.Thermal and Drift Velocities240
6.4.3.Electron Energy Distribution242
6.4.4.The Ionization Balance Equation245
6.4.5.Scaling Laws for Electrical Discharge Lasers247
6.4.6.Pump Rate and Pump Efficiency248
6.5.Conclusions250
Problems250
References253
7.Continuous Wave Laser Behavior255
7.1.Introduction255
7.2.Rate Equations255
7.2.1.Four-Level Laser256
7.2.2.Quasi-Three-Level Laser261
7.3.Threshold Conditions and Output Power:Four-Level Laser263
7.3.1.Space-Independent Model264
7.3.2.Space-Dependent Model270
7.4.Threshold Condition and Output Power:Quasi-Three-Level Laser279
7.4.1.Space-Independent Model279
7.4.2.Space-Dependent Model280
7.5.Optimum Output Coupling283
7.6.Laser Tuning285
7.7.Reasons for Multimode Oscillation287
7.8.Single-Mode Selection290
7.8.1.Single-Transverse-Mode Selection290
7.8.2.Single-Longitudinal-Mode Selection291
7.8.2.1.Fabry-Perot Etalons as Mode-Selective Elements292
7.8.2.2.Single Mode Selection via Unidirectional Ring Resonators294
7.9 Frequency-Pulling and Limit to Monochromaticity297
7.10.Laser Frequency Fluctuations and Frequency Stabilization300
7.11.Intensity Noise and Intensity Noise Reduction304
7.12.Conclusions306
Problems308
References310
8.Transient Laser Behavior313
8.1.Introduction313
8.2.Relaxation Oscillations313
8.2.1.Linearized Analysis315
8.3.Dynamical Instabilities and Pulsations in Lasers318
8.4.Q-Switching319
8.4.1.Dynamics of the Q-Switching Process319
8.4.2.Methods of Q-Switching321
8.4.2.1.Electro-Optical Q-Switching322
8.4.2.2.Rotating Prisms323
8.4.2.3.Acousto-Optic Q-Switches324
8.4.2.4.Saturable-Absorber Q-Switch325
8.4.3.Operating Regimes328
8.4.4.Theory of Active Q-Switching329
8.5.Gain Switching337
8.6.Mode-Locking339
8.6.1.Frequency-Domain Description340
8.6.2.Time-Domain Picture344
8.6.3.Methods of Mode-Locking346
8.6.3.1.Active Mode-Locking346
8.6.3.2.Passive Mode Locking350
8.6.4.The Role of Cavity Dispersion in Femtosecond Mode-Locked Lasers356
8.6.4.1.Phase-Velocity,Group-Velocity and Group-Delay-Dispersion356
8.6.4.2.Limitation on Pulse Duration due to Group-Delay Dispersion358
8.6.4.3.Dispersion Compensation360
8.6.4.4.Soliton-type of Mode-Locking361
8.6.5.Mode-Locking Regimes and Mode-Locking Systems364
8.7.Cavity Dumping368
8.8.Concluding Remarks369
Problems370
References372
9.Solid-State,Dye,and Semiconductor Lasers375
9.1.Introduction375
9.2.Solid-State Lasers375
9.2.1.The Ruby Laser377
9.2.2.Neodymium Lasers380
9.2.2.1.Nd:YAG380
9.2.2.2.Nd:Glass383
9.2.2.3.Other Crystalline Hosts384
9.2.3.Yb:YAG384
9.2.4.Er:YAG and Yb:Er:glass386
9.2.5.Tm:Ho:YAG387
9.2.6.Fiber Lasers389
9.2.7.Alexandrite Laser391
9.2.8.Titanium Sapphire Laser394
9.2.9.Cr:LISAF and Cr:LICAF396
9.3.Dye Lasers397
9.3.1.Photophysical Properties of Organic Dyes397
9.3.2.Characteristics of Dye Lasers401
9.4.Semiconductor Lasers405
9.4.1.Principle of Semiconductor Laser Operation405
9.4.2.The Homojunction Laser407
9.4.3.The Double-Heterostructure Laser408
9.4.4.Quantum Well Lasers413
9.4.5.Laser Devices and Performances416
9.4.6.Distributed Feedback and Distributed Bragg Reflector Lasers419
9.4.7.Vertical Cavity Surface Emitting Lasers423
9.4.8.Applications of Semiconductor Lasers425
9.5.Conclusions427
Problems427
References429
10.Gas,Chemical,Free Electron,and X-Ray Lasers431
10.1.Introduction431
10.2.Gas Lasers431
10.2.1.Neutral Atom Lasers432
10.2.1.1.Helium-Neon Lasers432
10.2.1.2.Copper Vapor Lasers437
10.2.2.Ion Lasers439
10.2.2.1.Argon Laser439
10.2.2.2.He-Cd Laser442
10.2.3.Molecular Gas Lasers444
10.2.3.1.The CO2 Laser444
10.2.3.2.The CO Laser454
10.2.3.3.The N2 Laser456
10.2.3.4.Excimer Lasers457
10.3.Chemical Lasers461
10.3.1.The HF Laser461
10.4.The Free-Electron Laser465
10.5.X-ray Lasers469
10.6.Concluding Remarks471
Problems471
References473
11.Properties of Laser Beams475
11.1.Introduction475
11.2.Monochromaticity475
11.3.First-Order Coherence476
11.3.1.Degree of Spatial and Temporal Coherence477
11.3.2.Measurement of Spatial and Temporal Coherence480
11.3.3.Relation Between Temporal Coherence and Monochromaticity483
11.3.4.Nonstationary Beams485
11.3.5.Spatial and Temporal Coherence of Single-Mode and Multimode Lasers485
11.3.6.Spatial and Temporal Coherence of a Thermal Light Source488
11.4.Directionality489
11.4.1.Beams with Perfect Spatial Coherence489
11.4.2.Beams with Partial Spatial Coherence491
11.4.3.The M2 Factor and the Spot-Size Parameter of a Multimode Laser Beam492
11.5.Laser Speckle495
11.6.Brightness498
11.7.Statistical Properties of Laser Light and Thermal Light499
11.8.Comparison Between Laser Light and Thermal Light501
Problems503
References504
12.Laser Beam Transformation:Propagation,Amplification,Frequency Conversion,Pulse Compression and Pulse Expansion505
12.1.Introduction505
12.2.Spatial Transformation:Propagation of a Multimode Laser Beam506
12.3.Amplitude Transformation:Laser Amplification507
12.3.1.Examples of Laser Amplifiers:Chirped-Pulse-Amplification512
12.4.Frequency Conversion:Second-Harmonic Generation and Parametric Oscillation516
12.4.1.Physical Picture516
12.4.1.1.Second-Harmonic Generation517
12.4.1.2.Parametric Oscillation524
12.4.2.Analytical Treatment526
12.4.2.1.Parametric Oscillation528
12.4.2.2.Second-Harmonic Generation532
12.5.Transformation in Time:Pulse Compression and Pulse Expansion535
12.5.1.Pulse Compression536
12.5.2.Pulse Expansion541
Problems543
References544
Appendices547
A.Semiclassical Treatment of the Interaction of Radiation with Matter547
B.Lineshape Calculation for Collision Broadening553
C.Simplified Treatment of Amplified Spontaneous Emission557
References560
D.Calculation of the Radiative Transition Rates of Molecular Transitions561
E.Space Dependent Rate Equations565
E.1.Four-Level Laser565
E.2.Quasi-Three-Level Laser571
F.Theory of Mode-Locking:Homogeneous Line575
F.1.Active Mode-Locking575
F.2.Passive Mode-Locking580
References581
G.Propagation of a Laser Pulse Through a Dispersive Medium or a Gain Medium583
References587
H.Higher-Order Coherence589
I.Physical Constants and Useful Conversion Factors593
Answers to Selected Problems595
Index607