图书介绍

2016考研数学常考题型解题方法技巧归纳 数学二PDF|Epub|txt|kindle电子书版本网盘下载

2016考研数学常考题型解题方法技巧归纳 数学二
  • 毛纲源编著;文都考研命题研究中心编 著
  • 出版社: 武汉:华中科技大学出版社
  • ISBN:9787568004060
  • 出版时间:2014
  • 标注页数:436页
  • 文件大小:161MB
  • 文件页数:456页
  • 主题词:高等数学-研究生-入学考试-题解

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

2016考研数学常考题型解题方法技巧归纳 数学二PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

第1篇 高等数学2

1.1 函数2

1.1.1 求两类函数的表达式2

题型1.1.1.1 已知一函数求其反函数的表达式2

题型1.1.1.2 求与复合函数有关的函数表达式2

1.1.2 函数的奇偶性3

题型1.1.2.1 判别(证明)几类函数的奇偶性3

题型1.1.2.2 奇、偶函数性质的应用6

1.1.3 判别(证明)函数的周期性7

1.1.4判定函数的有界性9

题型1.1.4.1 判定在有限开区间内连续函数的有界性9

题型1.1.4.2 判定无穷区间内连续函数的有界性10

题型1.1.4.3 判定分段连续函数的有界性10

1.2 极限、连续12

1.2.1 极限的概念与基本性质12

题型1.2.1.1 正确理解极限定义中的“ε-N”、“ε-б”、“ε-X”语言的含义12

题型1.2.1.2 正确区别无穷大量与无界变量12

题型1.2.1.3 正确运用极限的保序性、保号性14

题型1.2.1.4 正确运用极限的四则运算法则及夹逼准则求极限15

题型1.2.1.5 正确理解乘积极限的存在性16

题1.2.1.6 正确理解复合函数极限的存在性16

1.2.2 求未定式极限17

题型1.2.2.1 求0/0型或∞/∞型极限17

题型1.2.2.2 求0·∞型极限21

题型1.2.2.3 求∞-型极限22

题型1.2.2.4 求幂指函数型(00型、∞0型、1∞型)极限22

1.2.3 求数列极限25

题型1.2.3.1 求数列通项为n项和的极限25

题型1.2.3.2 求无穷多项积的极限28

题型1.2.3.3 求有限项之和或之积的数列极限28

题型1.2.3.4 求由递推关系式给出的数列的极限29

1.2.4 求几类子函数形式特殊的函数极限31

题型1.2.4.1 求需先考察左、右极限的函数极限31

题型1.2.4.2 求含根式差的函数极限33

题型1.2.4.3 求含或可化为含指数函数差的函数极限33

题型1.2.4.4 求含Inf(x)的函数极限,其中lim f x→□(x)=134

题型1.2.4.5 求含有界变量因式的函数极限35

题型1.2.4.6 求含取整函数的函数极限35

1.2.5 求含参变x的函数极限lim ? n→∞(n,x)36

题型1.2.5.1 求lim ? n→∞(n,x),其中?(n,x)或可化为指数函数型F(x)g(n)36

题型1.2.5.2 求lim ? n→∞(n,x),其中?(n,x)或可化为幂函数型g(n)F(x)37

题型1.2.5.3 求lim ? (n,x),其中?(t,x)或可化为F(x)g(t)型或g(t)F(r)型37

题型1.2.5.4 求lim ? (n, x)=lim F n→∞(n,x)g(x,n),或lim? t→t0(t,x)=lim F t→t0(t,x)g(x,t)38

1.2.6 已知一极限求其待定常数或另一极限,,38

题型1.2.6.1 已知极限式的极限,求其待定常数38

题型1.2.6.2 由含未知函数的一(些)极限,求含该函数的另一极限44

1.2.7 比较和确定无穷小f的阶45

题型1.2.7.1 比较无穷小量的阶47

题型1.2.7.2 确定无穷小量的阶数48

题型1.2.7.3 正确运用无穷小量阶的运算法则49

1.2.8 讨论函数的连续性及间断点的类型50

题型1.2.8.1 判断函数的连续性50

题型1.2.8.2 求函数的间断点并判断其类型54

1.2.9 连续函数性质的两点应用56

题型1.2.9.1 证明中值等式命题56

题型1.2.9.2 证明方程实根的存在性58

1.3 一元函数微分学61

1.3.1 导数定义的两点应用61

题型1.3.1.1 判断函数在某点的可导性61

题型1.3.1.2 求分式函数的极限65

题型1.3.1.3 讨论函数性质67

1.3.2 讨论分段函数的可导性及其导函数的连续性68

题型1.3.2.1 讨论分段函数的可导性68

题型1.3.2.2 讨论分段函数导函数的连续性70

题型1.3.2.3 讨论某类特殊分段函数的连续性、可导性及其导函数的连续性71

1.3.3 讨论含绝对值函数的可导性72

题型1.3.3.1 讨论|f(x)|的可导性72

题型1.3.3.2 讨论f(x)=|?(x)|g(x)的可导性73

1.3.4 求一元函数的导数和微分74

题型1.3.4.1 求复合函数的导数74

题型1.3.4.2 求反函数的导数,75

题型1.3.4.3 求隐函数的导数76

题型1.3.4.4 求由参数式确定的函数的导数78

题型1.3.4.5 求分段函数的导数79

题型1.3.4.6 求幂指函数及含多个因子连乘积的函数的导数80

题型1.3.4.7 求某些简单函数的高阶导数81

题型1.3.4.8 求一元函数的微分83

1.3.5 利用连续性、可导性确定待定常数85

题型1.3.5.1 利用连续性确定待定常数85

题型1.3.5.2 利用可导性确定待定常数87

1.3.6 利用微分中值定理的条件及其结论解题88

1.3.7 利用罗尔定理证明中值等式90

题型1.3.7.1 证明中值等式f′(ξ)=0或f(ξ)=090

题型1.3.7.2 证明存在ξ ∈ (a,b),使cf′(ξ)=bg′(ξ),其中c,b为常数91

题型1.3.7.3 证明存在ξ ∈ (a,b),使g(ξ)f′(ξ)+h(ξ)f(ξ)=Q(ξ)(1.3.7.1)92

题型1.3.7.4 证明存在ξ ∈ (a,b),使f(ξ)g′(ξ)+f′(ξ)g(ξ)=093

题型1.3.7.5 证明存在ξ ∈ (a,b),使f′(ξ)g(ξ)-f(ξ)g′(ξ)=094

题型1.3.7.6 证明存在ξ ∈ (a,b),使f′(ξ)g(ξ)-f(ξ)g″(ξ)=094

题型1.3.7.7 证明存在ξ ∈ (a,b),使f′(ξ)+g′(ξ)f(ξ)=094

题型1.3.7.8 证明存在ξ ∈ (a,b),使nf(ξ)+ξ(ξ)=0(n为正整数)94

题型1.3.7.9 证明存在ξ ∈ (a,b),使f′(ξ)+g′(ξ)[f(ξ)-bξ]=b95

题型1.3.7.10 证明含两端点(及其函数值)的中值等式96

题型1.3.7.11 证明与定积分有关的中值等式97

1.3.8 拉格朗日中值定理的应用99

题型1.3.8.1 证明与函数差值(改变量)有关的中值(不)等式99

题型1.3.8.2 证明函数与其导函数的关系100

题型1.3.8.3 求解与函数差值有关的问题103

题型1.3.8.4 求中值的极限位置103

1.3.9 利用柯西中值定理证明中值等式105

题型1.3.9.1 证明两函数差值(增量)比的中值等式105

题型1.3.9.2 证明两函数导数比的中值等式106

1.3.10 证明多个中值所满足的中值等式107

1.3.11 泰勒定理的几点应用109

题型1.3.11.1 求函数的泰勒展开式109

题型1.3.11.2 应用泰勒公式(麦克劳林公式)求极限110

题型1.3.11.3 证明含高阶导函数的中值命题111

题型1.3.11.4 应用泰勒公式(或麦克劳林公式)证明不等式112

题型1.3.11.5 求函数在某点处的高阶导数值114

1.3.12 利用导数证明不等式115

题型1.3.12.1 证明与函数改变量有关的不等式116

题型1.3.12.2 利用函数的导数不等式证明函数不等式117

题型1.3.12.3 证明含有或可化为含有均值变量(自变量或函数)的不等式117

题型1.3.12.4 已知F(a)≥0(或F(b)≥0),证明x>a(或x<b)时F(x)>0118

题型1.3.12.5 证明含常数加项的不等式120

题型1.3.12.6 证明含两个变量(常数)的函数(数值)不等式121

题型1.3.12.7 利用函数和导数的几何意义证明函数不等式121

1.3.13 讨论函数性态123

题型1.3.13.1 证明函数在某区间上是常数123

题型1.3.13.2 证明(判别)函数的单调性123

题型1.3.13.3 利用极限式讨论函数是否取得极值125

题型1.3.13.4 利用方程讨论函数是否取极值,其曲线是否有拐点126

题型1.3.13.5 利用导数不等式讨论函数是否取极值,其曲线是否有拐点127

题型1.3.13.6 利用极值点或拐点讨论函数性质128

题型1.3.13.7 求曲线的凹凸区间与拐点128

题型1.3.13.8 求函数的单调区间、极值、最值131

题型1.3.13.9 求曲线的渐近线134

1.3.14 函数性态与函数图形136

题型1.3.14.1 利用函数性态作函数图形136

题型1.3.14.2 已知函数图形,确定函数或其导函数性质(或图形)137

题型1.3.14.3 已知导函数图形,确定原来函数的性态137

1.3.15 利用函数性态讨论方程的根138

题型1.3.15.1 讨论不含参数的方程实根的存在性及其个数138

题型1.3.15.2 讨论含参数的方程实根的存在性及其个数139

题型1.3.15.3 已知方程根的个数,求其参数的取值范围140

1.3.16 一元函数微分学的几何应用141

题型1.3.16.1 求平面曲线的切线方程和法线方程141

题型1.3.16.2 求解与切线在坐标轴上的截距有关的问题144

题型1.3.16.3 求解与两曲线相切的有关问题144

题型1.3.16.4 求解与平面曲线的曲率有关的问题145

1.4 一元函数积分学147

1.4.1 原函数与不定积分的关系147

题型1.4.1.1 原函数的概念及其判定147

题型1.4.1.2 求分段函数的原函数或不定积分148

题型1.4.1.3 利用积分与微分运算的互逆关系求解与原函数有关的问题148

1.4.2 各类被积函数不定积分的算法149

题型1.4.2.1 计算被积函数仅为一类函数或为两类不同函数乘积的不定积分149

题型1.4.2.2 计算简单无理函数的不定积分150

题型1.4.2.3 求∫ 1/(ax+b)k f[1(ax+b)k-1]dx,其中k(k≠1)为正实数154

题型1.4.2.4 求∫ f(x)/g(x)dx154

题型1.4.2.5 求被积函数的分母为或可化为相差常数的两函数乘积的不定积分156

题型1.4.2.6 求三角函数的不定积分157

题型1.4.2.7 求被积函数含反三角函数的积分159

题型1.4.2.8 有理分式函数的积分∫ P(x)/Q(x) dx(其中P(x),Q(x)为多项式)的算法160

1.4.3 利用定积分性质计算定积分161

题型1.4.3.1 利用其几何意义计算定积分161

题型1.4.3.2 计算对称区间上的定积分162

题型1.4.3.3 计算周期函数的定积分164

题型1.4.3.4 利用定积分的常用计算公式求定积分165

题型1.4.3.5 计算被积函数含函数导数或已知其导数的函数的积分167

题型1.4.3.6 比较和估计定积分的大小168

题型1.4.3.7 求解含积分值为常数的函数方程169

题型1.4.3.8 计算几类需分子区间积分的定积分169

题型1.4.3.9 计算含参数的定积分172

题型1.4.3.10 求需换元计算的定积分172

题型1.4.3.11 求由定积分表示的变量极限174

1.4.4 求解与变限积分有关的问题175

题型1.4.4.1 计算含变限积分的极限175

题型1.4.4.2 求变限积分的导数178

题型1.4.4.3 求变限积分的定积分180

题型1.4.4.4 讨论变限积分函数的性态182

1.4.5 证明定积分等式184

题型1.4.5.1 证明定积分的变换公式184

题型1.4.5.2 证明定积分的中值等式185

1.4.6 证明积分不等式186

题型1.4.6.1 证明积分限相等时不等式两端成为零的积分不等式186

题型1.4.6.2 证明函数及其导函数所满足的积分不等式187

题型1.4.6.3 证明∫ b a f(x)dx(或|∫ b a f (x)dx|)≤k(或≥k),k为常数189

题型1.4.6.4 证明题设中有二阶导数大(或小)于等于零的定积分不等式189

1.4.7 计算反常积分190

题型1.4.7.1 计算无穷区间上的反常积分191

题型1.4.7.2 判别∫ +∞ a dxxp(a>0与∫+∞ a dx/x(1nx)p(a>0)的敛散性194

题型1.4.7.3 判别无界函数的反常积分的敛散性,如收敛,计算其值194

题型1.4.7.4 判别∫ b a dx(b-x)与∫ b a dx/(x-a)p的敛散性,如收敛,计算其值197

题型1.4.7.5 判别混合型反常积分的敛散性,如收敛,计算其值197

题型1.4.7.6 已知反常积分的敛散性,求其待定常数或其取值范围198

1.4.8 定积分的应用199

题型1.4.8.1 已知曲线方程,求其所围平面图形的面积199

题型1.4.8.2 已知曲线所围平面图形的面积(或其旋转体体积),反求该曲线202

题型1.4.8.3 计算旋转体体积202

题型1.4.8.4 计算旋转体的侧(表)面积205

题型1.4.8.5 计算平行截面面积已知的立体体积206

题型1.4.8.6 计算平面曲线的弧长207

题型1.4.8.7 求解几何应用与最值问题相结合的应用题208

题型1.4.8.8 用定积分计算质心及形心211

题型1.4.8.9 计算物体沿直线所做的功212

题型1.4.8.10 计算压力与引力213

题型1.4.8.11 求函数在区间上的平均值215

1.5 多元函数微分学217

1.5.1 二(多)元函数微分学中的几个概念217

题型1.5.1.1 依定义判别二元函数在某点是否连续、可偏导及可微218

题型1.5.1.2 讨论二元函数连续、可偏导及可微之间的关系220

1.5.2 计算偏导数和全微分221

题型1.5.2.1 利用隐函数存在定理确定隐函数221

题型1.5.2.2 计算显函数的偏导数222

题型1.5.2.3 求抽象复合函数的偏导数223

题型1.5.2.4 计算隐函数的偏导数227

题型1.5.2.5 作变量代换将偏导数满足的方程变形230

题型1.5.2.6 求二元函数的全微分231

1.5.3 多元函数微分学的应用232

题型1.5.3.1 求二元函数的极值232

题型1.5.3.2 求二(多)元函数的条件极值235

题型1.5.3.3 求二(多)元函数的最值237

1.6 二重积分240

1.6.1 利用二重积分性质求解与二重积分有关的问题240

1.6.2 交换积分次序及转换二(累)次积分242

题型1.6.2.1 交换二(累)次积分的积分次序242

题型1.6.2.2 转换二(累)次积分243

1.6.3 用直角坐标系计算二重积分245

题型1.6.3.1 计算需根据积分区域选择积分次序的二重积分245

题型1.6.3.2 计算需根据被积函数选择积分次序的二重积分245

题型1.6.3.3 计算积分区域具有对称性、被积函数具有奇偶性的二重积分248

题型1.6.3.4 计算积分区域关于直线y=x对称的二重积分250

题型1.6.3.5 分块计算二重积分252

题型1.6.3.6 计算无界区域上较简单的二重积分255

1.6.4 用极坐标系计算二重积分256

题型1.6.4.1 计算圆域x2 +y2≤a(a > 0)上的二重积分256

题型1.6.4.2 计算圆域x2 +y2≤2ax(a > 0)上的二重积分257

题型1.6.4.3 计算圆域x2 +y2≤-2ax(a > 0)上的二重积分257

题型1.6.4.4 计算圆域x2 +y2≤2by(b > 0)上的二重积分258

题型1.6.4.5 计算圆域x2 +y2≤-26y(6 > 0)上的二重积分259

题型1.6.4.6 计算圆域x2 +y2≤ 2ax + 2by + c(a,b > 0)上的二重积分259

题型1.6.4.7 计算两圆域公共部分上的二重积分261

1.6.5 求含二重积分的极限261

1.7 常微分方程264

1.7.1 求解一阶线性微分方程264

题型1.7.1.1 求解可分离变量的微分方程264

题型1.7.1.2 求解齐次微分方程265

题型1.7.1.3 求解一阶线性微分方程266

题型1.7.1.4 求解几类可化为一阶线性方程的方程268

题型1.7.1.5 求解由自变量与因变量的两增量关系给出的一阶方程270

题型1.7.1.6 求满足某种性质的一阶线性方程的特解270

1.7.2 求解线性微分方程272

题型1.7.2.1 利用线性微分方程解的结构和性质求解有关问题273

题型1.7.2.2 求解几类可降阶的高阶微分方程273

题型1.7.2.3 求解常系数齐次线性方程275

题型1.7.2.4 求解二阶常系数非齐次线性方程277

题型1.7.2.5 变换已知的微分方程为新的形式,并求其解282

题型1.7.2.6 求解含变限积分的方程283

题型1.7.2.7 求解可化为一阶线性微分方程的函数方程284

1.7.3 已知特解反求其常系数线性方程284

题型1.7.3.1 已知其特解,反求该齐次方程284

题型1.7.3.2 已知其特解,反求该非齐次方程286

1.7.4 求解微分方程在几何与物理学上的简单应用题287

题型1.7.4.1 已知某曲线所围图形的几何量所满足的关系,反求该曲线287

题型1.7.4.2 求解与物理量有关的简单应用问题289

第2篇 线性代数295

2.1 计算行列式295

2.1.1 计算几类数字型行列式295

题型2.1.1.1 计算非零元素(主要)在一条或两条对角线上的行列式295

题型2.1.1.2 计算非零元素在三条线上的行列式298

题型2.1.1.3 计算行(列)和相等的行列式299

题型2.1.1.4 计算范德蒙行列式300

题型2.1.1.5 求代数余子式之和的值302

题型2.1.1.6 求行列式中含某因子的所有项304

题型2.1.1.7 计算三阶行列式304

2.1.2 计算抽象矩阵的行列式305

题型2.1.2.1 求由行(列)向量表示的矩阵的行列式的值305

题型2.1.2.2 计算与伴随矩阵有关的矩阵行列式306

题型2.1.2.3 求满足矩阵方程的某矩阵行列式之值306

题型2.1.2.4 已知某矩阵行列式的值,求相关联矩阵的行列式的值307

题型2.1.2.5 计算含零子块的四分块矩阵的行列式308

题型2.1.2.6 证明方阵的行列式等于零或不等于零309

题型2.1.2.7 利用特征值计算矩阵行列式310

2.1.3 克拉默法则的应用310

2.2 矩阵313

2.2.1 证明矩阵的可逆性313

题型2.2.1.1 已知一矩阵等式,证明有关矩阵可逆,并求其逆矩阵313

题型2.2.1.2 证明矩阵A可逆,且A-1=B315

题型2.2.1.3 证明和(差)矩阵可逆316

题型2.2.1.4 证明含逆矩阵的矩阵可逆,并求其逆矩阵317

题型2.2.1.5 证明方阵为不可逆矩阵318

2.2.2 矩阵元素给定,求其逆矩阵的方法318

2.2.3 求解与伴随矩阵有关的问题321

题型2.2.3.1 计算与伴随矩阵有关的矩阵行列式(参阅题型2.1.2.2)321

题型2.2.3.2 求与伴随矩阵有关的矩阵的逆矩阵322

题型2.2.3.3 求与伴随矩阵有关的矩阵的秩323

题型2.2.3.4 求伴随矩阵323

2.2.4 计算n阶矩阵的高次幂325

题型2.2.4.1 计算能分解为一列向量与一行向量相乘的矩阵的高次幂325

题型2.2.4.2 计算能相似对角化的矩阵的高次幂327

题型2.2.4.3 计算能分解为两个可交换矩阵之和的矩阵的高次幂328

题型2.2.4.4 计算其平方等于原矩阵或单位矩阵倍数的矩阵高次幂328

2.2.5 求矩阵的秩329

题型2.2.5.1 求元素具体给定的矩阵的秩329

题型2.2.5.2 求抽象矩阵的秩329

题型2.2.5.3 已知矩阵的秩,求其待定常数333

2.2.6 分块矩阵乘法运算的应用举例333

2.2.7 求解矩阵方程335

题型2.2.7.1 求解含单位矩阵加项的矩阵方程335

题型2.2.7.2 求解只含一个未知矩阵的矩阵方程337

题型2.2.7.3 求解含多个未知矩阵的矩阵方程338

2.2.8 初等变换与初等矩阵关系的应用340

题型2.2.8.1 用初等矩阵表示相应的初等变换340

题型2.2.8.2 利用初等矩阵逆矩阵的性质计算矩阵341

2.2.9 判别两同型矩阵等价的有关问题343

2.3 向量345

2.3.1 判别向量组线性相关、线性无关345

题型2.3.1.1 用线性相关性定义做选择题和填空题345

题型2.3.1.2 判别分量已知的向量组的线性相关性346

题型2.3.1.3 证明几类向量组的线性相关性347

题型2.3.1.4 已知向量组的线性相关性,求其待定常数352

2.3.2 判定一向量能否由向量组线性表示354

题型2.3.2.1 判定分量已知的向量能否由向量组线性表示354

题型2.3.2.2 判定一抽象向量能否由向量组线性表出355

题型2.3.2.3 判定一向量组能否由另一向量组线性表示356

2.3.3 两向量组等价的判别方法及常用证法357

2.3.4 向量组的秩与极大无关组361

题型2.3.4.1 求分量给出的向量组的秩及其极大无关组361

题型2.3.4.2 将向量用极大无关组线性表示362

题型2.3.4.3 证明与抽象向量组的秩有关的问题363

题型2.3.4.4 证一向量组为一极大无关组365

2.3.5 已知一向量(组)线性表示情况,求其所含待定常数365

2.3.6 将线性无关向量组正交规范化366

2.4 线性方程组368

2.4.1 判定线性方程组解的情况368

题型2.4.1.1判定齐次线性方程组解的情况368

题型2.4.1.2 判定非齐次线性方程组解的情况370

2.4.2 由其解反求方程组或其参数373

题型2.4.2.1 已知AX=0的解的情况,反求A中参数373

题型2.4.2.2 已知AX=b的解的情况反求方程组中的参数373

题型2.4.2.3 已知其基础解系,求该方程组的系数矩阵374

2.4.3 一组向量为基础解系的判别或证明376

2.4.4 基础解系和特解的简便求法378

2.4.5 求解含参数的线性方程组380

题型2.4.5.1 求解方程个数与未知数个数相等的线性方程组380

题型2.4.5.2 求解方程个数与未知数个数不等的线性方程组384

题型2.4.5.3 求解参数仅出现在常数项的线性方程组385

题型2.4.5.4 求含参数的方程组满足一定条件的通解386

题型2.4.5.5 求解有无穷多解的矩阵方程387

2.4.6 求抽象线性方程组的通解388

题型2.4.6.1 A没有具体给出,求AX=0的通解388

题型2.4.6.2 已知AX=b的特解,求其通解390

题型2.4.6.3 利用线性方程组的向量形式求(证明)其解391

2.4.7 求两线性方程组的非零公共解392

题型2.4.7.1 求两齐次线性方程组的非零公共解392

题型2.4.7.2 证明两齐次线性方程组有非零公共解394

题型2.4.7.3 讨论两方程组同解的有关问题395

2.5 矩阵的特征值、特征向量397

2.5.1 求矩阵的特征值、特征向量397

题型2.5.1.1 求元素给出的矩阵的特征值、特征向量397

题型2.5.1.2 求(证明)抽象矩阵的特征值、特征向量399

2.5.2 由特征值和(或)特征向量反求其矩阵402

题型2.5.2.1 由特征值和(或)特征向量反求矩阵的待定常数402

题型2.5.2.2 已知特征值、特征向量,反求其矩阵404

题型2.5.2.3 计算Anβ,其中β为列向量,A为方阵406

2.5.3 求相关联矩阵的特征值、特征向量406

2.5.4 判别同阶方阵是否相似408

题型2.5.4.1 判别方阵是否可对角化408

题型2.5.4.2 判别两同阶方阵是否相似411

2.5.5 相似矩阵性质的简单应用412

2.5.6 与两矩阵相似有关的计算414

题型2.5.6.1 矩阵A可相似对角化,求A中待定常数及可逆矩阵P,使P-1 AP =diag(λ1,λ2,,λn),其中λ1,λ2,,λn为A的特征值414

题型2.5.6.2 A为实对称矩阵,求A中待定常数及正交矩阵Q,使Q-1 AQ= Q T AQ=diag(λ1,λ2,,λn),其中λ1,λ2,,λn为A的特征值415

题型2.5.6.3 A为实对称矩阵,求与其相似的对角矩阵A416

题型2.5.6.4 已知矩阵A和可逆矩阵P满足一等式,求矩阵B,使P-1AP=B417

2.6 二次型419

2.6.1 求二次型的矩阵及其秩419

题型2.6.1.1 用矩阵形式表示二次419

题型2.6.1.2 求二次型的秩420

2.6.2 化标准形及由标准形确定二次型421

题型2.6.2.1 化二次型为标准形421

题型2.6.2.2 将实对称矩阵合同对角化426

题型2.6.2.3 已知二次型的标准形,确定该二次型428

2.6.3 判别(证明)实二次型(实对称矩阵)的正定性429

题型2.6.3.1 判别具体给定的二次型或其矩阵的正定性429

题型2.6.3.2 判别或证明抽象二次型(实对称矩阵)的正定性429

题型2.6.3.3 确定待定常数或其取值范围使二次型或其矩阵正定432

2.6.4 判别两矩阵是否合同432

题型2.6.4.1 判别(证明)两实对称矩阵合同432

题型2.6.4.2 判别(证明)两矩阵不合同434

2.6.5 讨论矩阵等价、相似及合同的关系434

热门推荐