图书介绍
应用回归分析和其他多元方法 英文版 第3版PDF|Epub|txt|kindle电子书版本网盘下载
![应用回归分析和其他多元方法 英文版 第3版](https://www.shukui.net/cover/4/34376356.jpg)
- (美)克雷鲍姆等著 著
- 出版社: 北京:机械工业出版社
- ISBN:7111123190
- 出版时间:2003
- 标注页数:798页
- 文件大小:33MB
- 文件页数:816页
- 主题词:回归分析-高等学校-教材-英文
PDF下载
下载说明
应用回归分析和其他多元方法 英文版 第3版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 CONCEPTS AND EXAMPLES OF RESEARCH1
1-1 Concepts1
1-2 Examples2
1-3 Concluding Remarks5
References6
2 CLASSIFICATION OF VARIABLES AND THE CHOICE OF ANALYSIS7
2-1 Classification of Variables7
2-2 Overlapping of Classification Schemes11
2-3 Choice of Analysis11
References13
3 BASIC STATISTICS:A REVIEW14
3-1 Preview14
3-2 Descriptive Statistics15
3-3 Random Variables and Distributions16
3-4 Sampling Distributions of t,χ2,and F19
3-5 Statistical Inference:Estimation21
3-6 Statistical Inference:Hypothesis Testing24
3-7 Error Rates,Power,and Sample Size28
Problems30
References33
4 INTRODUCTION TO REGRESSION ANALYSIS34
4-1 Preview34
4-2 Association versus Causality35
4-3 Statistical versus Deterministic Models37
4-4 Concluding Remarks38
References38
5 STRAIGHT-LINE REGRESSION ANALYSIS39
5-1 Preview39
5-2 Regression with a Single Independent Variable39
5-3 Mathematical Properties of a Straight Line42
5-4 Statistical Assumptions for a Straight-line Model43
5-5 Determining the Best-fitting Straight Line47
5-6 Measure of the Quality of the Straight-line Fit and Estimate of σ251
5-7 Inferences About the Slope and Intercept52
5-8 Interpretations of Tests for Slope and Intercept54
5-9 Inferences About the Regression Line μY|X=β0+β1X57
5-10 Prediction of a New Value of Y at X059
5-11 Assessing the Appropriateness of the Straight-line Model60
Problems60
References87
6 THE CORRELATION COEFFICIENT AND STRAIGHT-LINE REGRESSION ANALYSIS88
6-1 Definition of r88
6-2 r as a Measure of Association89
6-3 The Bivariate Normal Distribution90
6-4 r and the Strength of the Straight-line Relationship93
6-5 What r Does Not Measure95
6-6 Tests of Hypotheses and Confidence Intervals for the Correlation Coefficient96
6-7 Testing for the Equality of Two Correlations99
Problems101
References103
7 THE ANALYSIS-OF-VARIANCE TABLE104
7-1 Preview104
7-2 The ANOVA Table for Straight-line Regression104
Problems108
8 MULTIPLE REGRESSION ANALYSIS:GENERAL CONSIDERATIONS111
8-1 Preview111
8-2 Multiple Regression Models112
8-3 Graphical Look at the Problem113
8-4 Assumptions of Multiple Regression115
8-5 Determining the Best Estimate of the Multiple Regression Equation118
8-6 The ANOVA Table for Multiple Regression119
8-7 Numerical Examples121
Problems123
References135
9 TESTING HYPOTHESES IN MULTIPLE REGRESSION136
9-1 Preview136
9-2 Test for Significant Overall Regression137
9-3 Partial F Test138
9-4 Multiple Partial F Test143
9-5 Strategies for Using Partial F Tests145
9-6 Tests Involving the Intercept150
Problems151
References159
10 CORRELATIONS:MULTIPLE,PARTIAL,AND MULTIPLE PARTIAL160
10-1 Preview160
10-2 Correlation Matrix161
10-3 Multiple Correlation Coefficient162
10-4 Relationship of RY|X1,X2,…,Xk to the Multivariate Normal Distribution164
10-5 Partial Correlation Coefficient165
10-6 Alternative Representation of the Regression Model172
10-7 Multiple Partial Correlation172
10-8 Concluding Remarks174
Problems174
Reference185
11 CONFOUNDING AND INTERACTION IN REGRESSION186
11-1 Preview186
11-2 Overview186
11-3 Interaction in Regression188
11-4 Confounding in Regression194
11-5 Summary and Conclusions199
Problems199
Reference211
12-1 Preview212
12-2 Simple Approaches to Diagnosing Problems in Data212
12 REGRESSION DIAGNOSTICS212
12-3 Residual Analysis216
12-4 Treating Outliers228
12-5 Collinearity237
12-6 Scaling Problems248
12-7 Treating Collinearity and Scaling Problems248
12-8 Alternate Strategies of Analysis249
12-9 An Important Caution252
Problems253
References279
13 POLYNOMIAL REGRESSION281
13-1 Preview281
13-2 Polynomial Models282
13-3 Least-squares Procedure for Fitting a Parabola282
13-5 Inferences Associated with Second-order Polynomial Regression284
13-4 ANOVA Table for Second-order Polynomial Regression284
13-6 Example Requiring a Second-order Model286
13-7 Fitting and Testing Higher-order Models290
13-8 Lack-of-fit Tests290
13-9 Orthogonal Polynomials292
13-10 Strategies for Choosing a Polynomial Model301
Problems302
14-2 Definitions317
14-1 Preview317
14 DUMMY VARIABLES IN REGRESSION317
14-3 Rule for Defining Dummy Variables318
14-4 Comparing Two Straight-line Regression Equations:An Example319
14-5 Questions for Comparing Two Straight Lines320
14-6 Methods of Comparing Two Straight Lines321
14-7 MethodⅠ:Using Separate Regression Fits to Compare Two Straight Lines322
14-8 MethodⅡ:Using a Single Regression Equation to Compare Two Straight Lines327
14-10 Testing Strategies and Interpretation:Comparing Two Straight Lines330
14-9 Comparison of Methods Ⅰ and Ⅱ330
14-11 Other Dummy Variable Models332
14-12 Comparing Four Regression Equations334
14-13 Comparing Several Regression Equations Involving Two Nominal Variables336
Problems338
References360
15 ANALYSIS OF COVARIANCE AND OTHER METHODS FOR ADJUSTING CONTINUOUS DATA361
15-1 Preview361
15-2 Adjustment Problem361
15-3 Analysis of Covariance363
15-4 Assumption of Parallelism:A Potential Drawback365
15-5 Analysis of Covariance:Several Groups and Several Covariates366
15-6 Comments and Cautions368
15-7 Summary371
Problems371
Reference385
16 SELECTING THE BEST REGRESSION EQUATION386
16-1 Preview386
16-2 Steps in Selecting the Best Regression Equation387
16-3 Step 1:Specifying the Maximum Model387
16-4 Step 2:Specifying a Criterion for Selecting a Model390
16-5 Step 3:Specifying a Strategy for Selecting Variables392
16-6 Step 4:Conducting the Analysis401
16-7 Step 5:Evaluating Reliability with Split Samples401
16-8 Example Analysis of Actual Data403
16-9 Issues in Selecting the Most Valid Model409
Problems409
References422
17 ONE-WAY ANALYSIS OF VARIANCE423
17-1 Preview423
17-2 One-way ANOVA:The Problem,Assumptions,and Data Configuration426
17-3 Methodology for One-way Fixed-effects ANOVA429
17-4 Regression Model for Fixed-effects One-way ANOVA435
17-5 Fixed-effects Model for One-way ANOVA438
17-6 Random-effects Model for One-way ANOVA440
17-7 Multiple-comparison Procedures for Fixed-effects One-way ANOVA443
17-8 Choosing a Multiple-comparison Technique456
17-9 Orthogonal Contrasts and Partitioning an ANOVA Sum of Squares457
Problems463
References483
18 RANDOMIZED BLOCKS:SPECIAL CASE OF TWO-WAY ANOVA484
18-1 Preview484
18-2 Equivalent Analysis of a Matched Pairs Experiment488
18-3 Principle of Blocking491
18-4 Analysis of a Randomized-blocks Experiment493
18-5 ANOVA Table for a Randomized-blocks Experiment495
18-6 Regression Models for a Randomized-blocks Experiment499
18-7 Fixed-effects ANOVA Model for a Randomized-blocks Experiment502
Problems503
References515
19 TWO-WAY ANOVA WITH EQUAL CELL NUMBERS516
19-1 Preview516
19-2 Using a Table of Cell Mcans518
19-3 General Methodology522
19-4 F Tests for Two-way ANOVA527
19-5 Regression Model for Fixed-effects Two-way ANOVA530
19-6 Interactions in Two-way ANOVA534
19-7 Random- and Mixed-effects Two-way ANOVA Models541
Problems544
References560
20 TWO-WAY ANOVA WITH UNEQUAL CELL NUMBERS561
20-1 Preview561
20-2 Problems with Unequal Cell Numbers:Nonorthogonality563
20-3 Regression Approach for Unequal Cell Sample Sizes567
20-4 Higher-way ANOVA571
Problems572
References588
21 ANALYSIS OF REPEATED MEASURES DATA589
21-1 Preview589
21-2 Examples590
21-3 General Approach for Repeated Measures ANOVA592
21-4 Overview of Selected Repeated Measures Designs and ANOVA-based Analyses594
21-5 Repeated Measures ANOVA for Unbalanced Data611
21-6 Other Approaches to Analyzing Repeated Measures Data612
Appendix 2l-A Examples of SAS s GLM and MIXED Procedures613
Problems616
References638
22-1 Preview639
22-2 The Principle of Maximum Likelihood639
22 THE METHOD OF MAXIMUM LIKELIHOOD639
22-3 Statistical Inference via Maximum Likelihood642
22-4 Summary652
Problems653
References655
23 LOGISTIC REGRESSION ANALYSIS656
23-1 Preview656
23-2 The Logistic Model656
23-3 Estimating the Odds Ratio Using Logistic Regression658
23-4 A Numerical Example of Logistic Regression664
23-5 Theoretical Considerations671
23-6 An Example of Conditional ML Estimation Involving Pair-matched Data with Unmatched Covariates677
23-7 Summary681
Problems682
References686
24-2 The Poisson Distribution687
24 POISSON REGRESSION ANALYSIS687
24-1 Preview687
24-3 An Example of Poisson Regression688
24-4 Poisson Regression:General Considerations690
24-5 Measures of Goodness of Fit694
24-6 Continuation of Skin Cancer Data Example696
24-7 A Second Illustration of Poisson Regression Analysis701
24-8 Summary704
Problems705
References709
A APPENDIX A—TABLES711
A-1 Standard Normal Cumulative Probabilities712
A-2 Percentiles of the t Distribution715
A-3 Percentiles of the Chi-square Distribution716
A-4 Percentiles of the F Distribution717
A-5 Values of?ln?724
A-6 Upper α Point of Studentized Range726
A-7 Orthogonal Polynomial Coefficients728
A-8 BonferToni Corrected Jackknife and Studentized Residual Critical Values729
A-9 Critical Values for Leverages730
A-10 Critical Values for the Maximum of N Values of Cook s d(i)times(n-k-1)731
B APPENDIX B—MATRICES AND THEIR RELATIONSHIP TO REGRESSION ANALYSIS732
C APPENDIX C—ANOVA INFORMATION FOR FOUR COMMON BALANCED REPEATED MEASURES DESIGNS744
C-1 Balanced Repeated Measures Design with One Crossover Factor (Treatments)744
C-2 Balanced Repeated Measures Design with Two Crossover Factors746
C-3 Balanced Repeated Measures Design with One Nest Factor (Treatments)750
C-4 Balanced Repeated Measures Design with One Crossover Factor and One Nest Factor752
C-5 Balanced Two-group Pre/Posttest Design755
References757
D SOLUTIONS TO EXERCISES758
INDEX787