图书介绍
遍历性理论引论PDF|Epub|txt|kindle电子书版本网盘下载
![遍历性理论引论](https://www.shukui.net/cover/45/33974363.jpg)
- PETER WALTERS 著
- 出版社: SPRINGER-VERLAG
- ISBN:7506201097
- 出版时间:2000
- 标注页数:252页
- 文件大小:98MB
- 文件页数:40279871页
- 主题词:
PDF下载
下载说明
遍历性理论引论PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 0 Preliminaries1
0.1 Introduction1
0.2 Measure Spaces3
0.3 Integrationry6
0.4 Absolutely Continuous Measures and Conditional Expectations8
0.5 Function Spaces9
0.6 Haar Measure11
0.7 Character Theory12
0.8 Endomorphisms of Tori14
0.9 Perron-Frobenius Theory16
0.10 Topology17
Chapter 1 Measure-Preserving Transformations19
1.l Definition and Examples19
1.2 Problems in Ergodic Theory23
1.3 Associated Isometrics24
1.4 Recurrence26
1.5 Ergodicity26
1.6 The Ergodic Theorem34
1.7 Mixing39
Chapter 2 Isomorphism, Conjugacy, and Spectral Isomorphism53
2.1 Point Maps and Set Maps53
2.2 Isomorphism of Measure-Preserving Transformations57
2.3 Conjugacy of Measure-Preserving Transformations59
2.4 The Isomorphism Problem62
2.5 Spectral Isomorphism63
2.6 Spectral Invariants66
Chapter 3 Measure-Preserving Transformations with Discrete Spectrum68
3.1 Eigenvalues and Eigenfunctions68
3.2 Discrete Spectrum69
3.3 Group Rotations72
Chapter 4 Entropy75
4.1 Partitions and Subalgebras75
4.2 Entropy of a Partition77
4.3 Conditional Entropy80
4.4 Entropy of a Measure-Preserving Transformation86
4.5 Properties of h(T,?) and h(T)89
4.6 Some Methods for Calculating h(T)94
4.7 Examples100
4.8 How Good an Invariant is Entropy?103
4.9 Bernoulli Automorphisms and Kolmogorov Automorphisms105
4.10 The Pinsker σ-Algebra of a Measure-Preserving Transformation113
4.11 Sequence Entropy114
4.12 Non-invertible Transformations115
4.13 Comments116
Chapter 5 Topological Dynamics118
5.1 Examples118
5.2 Minimality120
5.3 The Non-wandering Set123
5.4 Topological Transitivity127
5.5 Topological Conjugacy and Discrete Spectrum133
5.6 Expansive Homeomorphisms137
Chapter 6 Invariant Measures for Continuous Transformations146
6.1 Measures on Metric Spaces146
6.2 Invariant Measures for Continuous Transformations150
6.3 Interpretation of Ergodicity and Mixing154
6.4 Relation of Invariant Measures to Non-wandering Sets, Periodic Points and Topological Transitivity156
6.5 Unique Ergodicity158
6.6 Examples162
Chapter 7 Topological Entropy164
7.1 Definition Using Open Covers164
7.2 Bowen's Definition168
7.3 Calculation of Topological Entropy176
Chapter 8 Relationship Between Topological Entropy and Measure-Theoretic Entropy182
8.1 The Entropy Map182
8.2 The Variational Principle187
8.3 Measures with Maximal Entropy191
8.4 Entropy of Affine Transformations196
8.5 The Distribution of Periodic Points203
8.6 Definition of Measure-Theoretic Entropy Using the Metrics dn205
Chapter 9 Topological Pressure and Its Relationship with Invariant Measures207
9.1 Topological Pressure207
9.2 Properties of Pressure214
9.3 The Variational Principle217
9.4 Pressure Determines M(X,T)221
9.5 Equilibrium States223
Chapter 10 Applications and Other Topics229
10.1 The Qualitative Behaviour of Difleomorphisms229
10.2 The Subadditive Ergodic Theorem and the Multiplicative Ergodic Theorem230
10.3 Quasi-invariant Measures236
10.4 Other Types of Isomorphism238
10.5 Transformations of Intervals238
10.6 Further Reading239
References240
Index247