图书介绍
扩散 马尔可夫过程和鞅 第1卷PDF|Epub|txt|kindle电子书版本网盘下载
- 罗杰斯(Rogers,L.C.G.),威廉姆斯(Williams,D.)编 著
- 出版社: 世界图书出版公司北京公司
- ISBN:7506259214
- 出版时间:2003
- 标注页数:386页
- 文件大小:32MB
- 文件页数:406页
- 主题词:
PDF下载
下载说明
扩散 马尔可夫过程和鞅 第1卷PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
CHAPTER Ⅰ.BROWNIAN MOTION1
1.INTRODUCTION1
1 What is Brownian motion,and why study it?1
2.Brownian motion as a martingale2
3.Brownian motion as a Gaussian process3
4.Brownian motion as a Markov process5
5 Brownian motion as a diffusion(and martingale)7
2.BASICS ABOUT BROWNIAN MOTION10
6 Existence and uniqueness of Brownian motion10
7.Skorokhod embedding13
8.Donsker's Invariance Principle16
9.Exponential martingales and first-passage distributions18
10.Some sample-path properties19
11.Quadratic variation21
12.The strong Markov property21
13.Reflection25
14.Reflecting Brownian motion and local time27
15.Kolmogorov's test31
16.Brownian exponential martingales and the Law of the Iterated Logarithm31
3.BROWNIAN MOTION IN HIGHER DIMENSIONS36
17.Some martingales for Brownian motion36
18.Recurrence and transience in higher dimensions38
19.Some applications of Brownian motion to complex analysis39
20.Windings of planar Brownian motion43
21.Multiple points,cone points,cut points45
22.Potential theory of Brownian motion in IRd(d≥3)46
23.Brownian motion and physical diffusion51
4.GAUSSIAN PROCESSES AND LEVY PROCESSES55
Gaussian processes55
24.Existence results for Gaussian processes55
25 Continuity results59
26.Isotropic random flows66
27.Dynkin's Isomorphism Theorem71
Lévy processes73
28.Lévy processes73
29.Fluctuation theory and Wiener-Hopf factorisation80
30.Local time of Levy processes82
CHAPTER Ⅱ.SOME CLASSICAL THEORY85
1.BASIC MEASURE THEORY85
Measurability and measure85
1.Measurable spaces;σ-algebras;π-systems;d-systems85
2.Measurable functions88
3.Monotone-Class Theorems90
4.Measures;the uniqueness lemma;almost everywhere;a.e.(μ,∑)91
5.Carathéodory's Extension Theorem93
6.Inner and outerμ-measures;completion94
Integration95
7.Definition of the integral∫fdμ95
8.Convergence theorems96
9.The Radon-Nikodym Theorem;absolute continuity;λ《μnotation;equivalent measures98
10.Inequalities;Lp and Lp spaces(p≥1)99
Product structures101
11.Productσ-algebras101
12.Product measure;Fubini's Theorem102
13.Exercises104
2.BASIC PROBABILITY THEORY108
Probability and expectation108
14.Probability triple;almost surely (a.s.);a.s.(P),a.s.(P,F)108
15.lim sup En;First Borel-Cantelli Lemma109
16.Law of random variable;distribution function;joint law110
17.Expectation;E(X;F)110
18.Inequalities:Markov,Jensen,Schwarz,Tchebychev111
19.Modes of convergence of random variables113
Uniform integrability and L1 convergence114
20.Uniform integrability114
21.L1 convergence115
Independence116
22.Independence ofσ-algebras and of random variables116
23 Existence of families of independent variables118
24.Exercises119
3.STOCHASTIC PROCESSES119
The Daniell-Kolmogorov Theorem119
25.(ET,ET);σ-algebras on function space;cylinders andσ-cylinders119
26.Infinite products of probability triples121
27.Stochastic process;sample function;law121
28.Canonical process122
29.Finite-dimensional distributions;sufficiency;compatibility123
30.The Daniell-Kolmogorov(DK)Theorem:compact metrizable'case124
31.The Daniell-Kolmogorov(DK)Theorem:general case126
32.Gaussian processes;pre-Brownian motion127
33.Pre-Poisson set functions128
Beyond the DK Theorem128
34.Limitations of the DK Theorem128
35.The role of outer measures129
36.Modifications;indistinguishability130
37.Direct const ruction of Poisson measures and subordinators,and of local time from the zero set;Azéma's martingale131
38.Exercises136
4.DISCRETE-PARAMETER MARTINGALE THEORY137
Conditional expectation137
30.Fundamental theorem and definition137
40.Notation;agreement with elementary usage138
41.Properties of conditional expectation:a list139
42.The role of versions;regular conditional probabilities and pdfs140
43.A counterexample141
44.A uniform-integrability property of conditional expectations (Discrete-parameter)martingales and supermartingales142
45.Filtration;filtered space;adapted process;natural filtration143
46 Martingale;supermartingale;submartingale144
47 Previsible process;gambling strategy;a fundamental principle144
48.Doob's Upcrossing Lemma145
49.Doob's Supermartingale-Convergence Theorem146
50.L1 convergence and the UI property147
51.The Lévy-Doob Downward Theorem148
52.Doob's Submartingale and Lp Inequalities150
53.Martingales in L2:orthogonality of increments152
54.Doob decomposition153
55.The〈M〉and[M]processes154
Stopping times,optional stopping and optional sampling155
56.Stopping time155
57.Optional-stopping theorems156
58.The pre-Tσ-algebraFT158
59.Optional sampling159
60.Exercises161
5.CONTINUOUS-PARAMETER SUPERMARTINGALES163
Regularisation:R-supermartingales163
61.Orientation163
62.Some real-variable results163
63.Filtrations;supermartingales;R-processes,R-supermartingales166
64.Some important examples167
65.Doob's Regularity Theorem:Part 1169
66.Partial augmentation171
67.Usual conditions;R-filtered space;usual augmentation;R-regularisation172
68.A necessary pause for thought174
69.Convergence theorems for R-supermartingales175
70.Inequalities and Lp convergence for R-submartingales177
71.Martingale proof of Wiener's Theorem;canonical Brownian motion178
72.Brownian motion relative to a filtered space180
Stopping times181
73.Stopping time T;pre-Tσ-algebra GT;progressive process181
74.First-entrance(début)times;hitting times;first-approach times:the easy cases183
75.Why‘completion'in the usual conditions has to be introduced184
76 Début and Section Theorems186
77.Optional Sampling for R-supermartingales under the usual conditions188
78 Two important results for Markov-process theory191
79.Exercises192
6.PROBABI LITY M EASU RES ON LUSIN SPACES200
‘Weak convergence'202
80 C(J)and Pr(J)when J is compact Hausdorff202
81.C(J)and Pr(J)when J is compact metrizable203
82.Polish and Lusin spaces205
83.The Cb(S)topology of Pr(S)when S is a Lusin space;Prohorov's Theorem207
84.Some useful convergence results211
85.Tightness in Pr(W)when W is the path-space W:=C([0,∞);IR)213
86.The Skorokhod representation of Ch(S)convergence on Pr(S)215
87.Weak convergence versus convergence of finite-dimensional distributions216
Regular conditional probabilities217
88.Some preliminaries217
89.The main existence theorem218
90.Canonical Brownian Motion CBM(IRN);Markov property of Px laws220
91.Exercises222
CHAPTER Ⅲ.MARKOV PROCESSES227
1.TRANSITION FUNCTIONS AND RESOLVENTS227
1.What is a(continuous-time)Markov process?227
2.The finite-state-space Markov chain228
3.Transition functions and their resolvents231
4.Contraction semigroups on Banach spaces234
5.The Hille-Yosida Theorem237
2.FELLER-DYNKIN PROCESSES240
6.Feller-Dynkin(FD)semigroups240
7.The existence theorem:canonical FD processes243
8.Strong Markov property:preliminary version247
9.Strong Markov property:full version;Blumenthal's 0-1 Law249
10.Some fundamental martingales;Dynkin's formula252
11.Quasi-left-continuity255
12.Characteristic operator256
13.Feller-Dynkin diffusions258
14.Characterisation of continuous real Lévy processes261
15.Consolidation262
3.ADDITIVE FUNCTIONALS263
16.PCHAFs;λ-excessive functions;Brownian local time263
17.Proof of the Volkonskii-?ur-Meyer Theorem267
18.Killing269
19.The Feynmann-Kac formula272
20.A Ciesielski-Taylor Theorem275
21.Time-substitution277
22 Reflecting Brownian motion278
23.The Feller-McKean chain281
24.Elastic Brownian motion;the arcsine law282
4.APPROACH TO RAY PROCESSES:THE MARTIN BOUNDARY284
25.Ray processes and Markov chains284
26.Important example:birth process286
27.Excessive functions,the Martin kernel and Choquet theory288
28.The Martin compactification292
29.The Martin representation;Doob-Hunt explanation295
30.R.S.Martin's boundary297
31.Doob-Hunt theory for Brownian motion298
32.Ray processes and right processes302
5.RAY PROCESSES303
33.Orientation303
34.Ray resolvents304
35.The Ray-Knight compactification306
Ray's Theorem:analytical part309
36.From semigroup to resolvent309
37.Branch-points313
38.Choquet rep resentation of l-excessive probability measures315
Ray's Theorem:probabilistic part316
39.The Ray process associated with a given entrance law316
40.Strong Markov property of Ray processes318
41.The role of branch-points319
6.APPLICATIONS321
Martin boundary theory in retrospect321
42.From discrete to continuous time321
43.Proof of the Doob-Hunt Convergence Theorem323
44.The Choquet representation of ∏-excessive functions325
45.Doob h-transforms327
Time reversal and related topics328
46.Nagasawa's formula for chains328
47.Strong Markov property under time reversal330
48.Equilibrium charge331
49.BM(IR)and BES(3):splitting times332
A first look at Markov-chain theory334
50.Chains as Ray processes334
51.Significance of qi337
52.Taboo probabilities;first-entrance decomposition337
53.The Q-matrix;DK conditions339
54.Local-character condition for Q340
55.Totally instantaneous Q-matrices342
56.Last exits343
57.Excursions from b345
58.Kingman's solution of the‘Markov characterization problem'347
59.Symmetrisable chains348
60.An open problem349
References for Volumes 1 and 2351
Index to Volumes 1 and 2375