图书介绍
紧复曲面 原书第2版PDF|Epub|txt|kindle电子书版本网盘下载
- (德)巴斯著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510033018
- 出版时间:2011
- 标注页数:436页
- 文件大小:18MB
- 文件页数:446页
- 主题词:代数曲面-英文
PDF下载
下载说明
紧复曲面 原书第2版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Introduction1
Historical Note1
The Contents of the Book8
Standard Notation12
Ⅰ.Preliminaries13
Topology and Algebra13
1. Notation and Basic Facts13
2. Some Properties of Bilinear Forms15
3. Vector Bundles, Characteristic Classes and the Index Theorem21
Complex Manifolds23
4. Basic Concepts and Facts23
5. Holomorphic Vector Bundles, Serre Duality and Riemann-Roch24
6. Line Bundles and Divisors26
7. Algebraic Dimension and Kodaira Dimension28
General Analytic Geometry30
8. Complex Spaces30
9. The σ-Process34
10. Deformations of Complex Manifolds35
Differential Geometry of Complex Manifolds39
11. De Rham Cohomology39
12. Dolbeault Cohomology41
13. Kanler Manifolds42
14. Weight-1 Hodge Structures48
15. Yaus results on Kahler-Einstein Metrics51
Coverings53
16. Ramification53
17. Cyclic Coverings54
18. Covering Tricks55
Projective-Algebraic Varieties57
19. GAGA Theorems and Proiectivitv Criteria57
20. Tneorems of ertmi and Letscnetz58
Ⅱ.Curves on Surfaces61
Embedded Curves61
1. Some Standard Exact Sequences61
2. The Picard-Group of an Embedded Curve63
3. Riemann-Roch for an Embedded Curve65
4. The Residue Theorem66
5. The Trace Map68
6. Serre Duality on an Embedded Curve70
7. The σ-process75
8. Simple Singularities of Curves78
Intersection Theory81
9. Intersection Multiplicities81
10. Intersection Numbers83
11. The Arithmetical Genus of an Embedded Curve84
12. 1-Connected Divisors85
Ⅲ.Mappings of Surfaces89
Bimeromorphic Geometry89
1. Bimeromorphic Maps89
2. Exceptional Curves90
3. Rational Singularities93
4. Exceptional Curves of the First Kind97
5. Hirzebruch-Jung Singularities99
6. Resoiution or Surface Singuiarities105
7. Singularities of Double Coverings, Simple Singularities of Surfaces107
Fibrations of Surfaces110
8. Generalities on Fibrations110
9. The n-th Root Fibration113
10. Stable Fibrations114
11. Direct Image Sheaves116
12. Relative Duality118
The Period Map of Stable Fibrations121
13. Period Matrices of Stable Curves121
14. Topological Monodromy of Stable Fibrations122
15. Monodromy of the Period Matrix125
16. Extending the Period Map127
17. The Degree of fωx/s129
18. Iitaka's Conjecture C2,1131
Ⅳ.Some General Properties of Surfaces135
1. Meromorphic Maps, Associated to Line Bundles135
2. Hodge Theory on Surfaces137
3. Existence of K?hler Metrics144
4. Deformations of Surfaces154
5. Some Inequalities for Hodge Numbers157
6. Projectivity of Surfaces159
7. The Nef Cone162
8. Surfaces of Algebraic Dimension Zero165
9. Almost-Complex Surfaces without any Complex Structure166
10. Bogomolov's Theorem168
11. Reider's Method174
12. Vanishing Theorems on Surfaces179
Ⅴ.Examples185
Some Classical Examples185
1. The Projective Plane P2185
2. Complete Intersections187
3. Tori of Dimension 2188
Fibre Bundles189
4. Ruled Surfaces189
5. Elliptic Fibre Bundles193
6. Higher Genus Fibre Bundles199
Elliptic Fibrations200
7. Kodaira's Table of Singular Fibres200
8. Stable Fibrations202
9. The Jacobian Fibration204
10. Stable Reduction207
11. Classification211
12. Invariants212
13. Logarithmic Transformations216
Kodaira Fibrations220
14. Kodaira Fibrations220
Finite Quotients223
15. The Godeaux Surface223
16. Kummer Surfaces224
17. Quotients of Products of Curves224
Infinite Quotients225
18. Hopf Surfaces225
19. Inoue Surfaces227
20. Quotients of Bounded Domains in C2230
21. Hilbert Modular Surfaces231
Coverings236
22. Invariants of Double Coverings236
23. An Enriques Surface238
24. Kummer Coverings240
Ⅵ.The Enriques Kodaira Classification243
1. Statement of the Main Result243
2. Characterising Minimal Surfaces whose Canonical Bundle is Nef247
3. The Rationality Theorem and Castelnuovo's Criterion248
4. The Case a(X)=2252
5. The Case a(X)=1255
6. The Case a(X)=0257
7. The Final Step262
8. Deformations263
Ⅶ.Surfaces of General Type269
Preliminaries269
1. Introduction269
2. Some General Theorems271
Two Inequalities273
3. Noether's Inequality273
4. The Inequalityc21≤3c2275
Pluricanonical Maps279
5. The Main Results279
6. Proof of the Main Results281
7. The Exceptional Cases and the 1-Canonical Map286
Surfaces with Given Chern Numbers290
8. The Geography of Chern Numbers291
9. Surfaces on the Noether Lines296
10. Surfaces with q=pg=0299
Ⅷ.K3-Surfaces and Enriques Surfaces307
Introduction307
1. Notation307
2. The Results309
K 3-Surfaces310
3. Topological and Analvtical Invariants310
4. Digression on Affne Geometrv over F2314
5. ne Neron-Severi Lattice of Kummer Surfaces316
6. The Torelli Theorem for Kummer Surfaces322
7. The Local Torelli Theorem for K3-Surfaces323
8. A Density Theorem325
9. Behaviour of the K?hler Cone under Deformations327
10. Degenerations of Isomorphisms between K3-Surfaces329
11. The Torelli T neorems for K3-Surfaces332
12. Construction of Moduli Spaces334
13. Digression on Quaternionic Structures336
14. Surjectivity of the Period Map338
Enriques Surfaces339
15. Topological and Analytic Invariants339
16. Divisors on an Enriques Surface Y340
17. Elliptic Pencils342
18. Double Coverings of Quadrics345
19. The Period Map350
20. The Period Domain for Enriques Surfaces352
21. Global Properties of the Period Map354
Special Topics358
22. Proiective K3-surfaces and Mirror Symmetry358
23. Special Curves onK3-Surfaces364
24. An Application to Hyperbolic Geometry369
Ⅸ.Topological and Differentiable Structure of Surfaces375
Topology of Simply Connected Compact Complex Surfaces375
1. Freedman's Results375
2. Representability of Unimodular Forms377
Donaldson Invariants379
3. Introduction379
4. The Donaldson Invariant,a Bird's Eve View380
5. Infiniteiy many Homeomorphic Surfaces which are not Ditteomorphic383
6. FurtherResults obtained by the Donaldson Method390
Seiberg-Witten Invariants391
7. Introduction391
8. Properties of the Invariants393
9.Surfaces Diffeomorpnic to a Rational urface395
Bibliography401
Notation425
Index429