图书介绍
应用多元统计分析方法 影印版PDF|Epub|txt|kindle电子书版本网盘下载
- (美)约翰逊(Johnson,D.E.)著 著
- 出版社: 北京:高等教育出版社
- ISBN:7040165457
- 出版时间:2005
- 标注页数:567页
- 文件大小:27MB
- 文件页数:586页
- 主题词:多元分析-统计分析-分析方法-高等学校-教材-英文
PDF下载
下载说明
应用多元统计分析方法 影印版PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.APPLIED MULTIVARIATE METHODS1
1.1 An Overview of Multivariate Methods1
Contents1
Variable-and Individual-Directed Techniques2
Creating New Variables2
Principal Components Analysis3
Factor Analysis3
Discriminant Analysis4
Cluster Analysis5
Canonical Discriminant Analysis5
Logistic Regression5
Multivariate Analysis of Variance6
Canonical Variates Analysis7
Canonical Correlation Analysis7
Where to Find the Preceding Topics7
1.2 Two Examples8
1.3 Types of Variables11
Independence of Experimental Units11
1.4 Data Matrices and Vectors12
Variable Notation13
Data Matrix13
Data Vectors13
Data Subscripts14
1.5 The Multivariate Normal Distribution15
Some Definitions15
Summarizing Multivariate Distributions16
Mean Vectors and Variance-Covariance Matrices16
Correlations and Correlation Matrices17
The Multivariate Normal Probability Density Function19
Bivariate Normal Distributions19
1.6 Statistical Computing22
Cautions About Computer Usage22
Missing Values22
Removing Rows of the Data Matrix23
Replacing Missing Values by Averages23
Replacing Missing Values by Zeros23
Sampling Strategies24
Data Entry Errors and Data Verification24
1.7 Multivariate Outliers25
Locating Outliers25
Dealing with Outliers25
Outliers May Be Influential26
1.8 Multivariate Summary Statistics26
1.9 Standardized Data and/or Z Scores27
Exercises28
2.SAMPLE CORRELATIONS35
2.1 Statistical Tests and Confidence Intervals35
Are the Correlations Large Enough to Be Useful?36
Confidence Intervals by the Chart Method36
Confidence Intervals by Fisher's Approximation38
Confidence Intervals by Ruben's Approximation39
Variable Groupings Based on Correlations40
Relationship to Factor Analysis46
2.2 Summary46
Exercises47
3.MULTIVARIATE DATA PLOTS55
3.1 Three-Dimensional Data Plots55
3.2 Plots of Higher Dimensional Data59
Chernoff Faces61
Star Plots and Sun-Ray Plots63
Andrews'Plots65
Side-by-Side Scatter Plots66
3.3 Plotting to Check for Multivariate Normality67
Summary73
Exercises73
4.EIGENVALUES AND EIGENVECTORS77
4.1 Trace and Determinant77
Examples78
4.2 Eigenvalues78
4.3 Eigenvectors79
Positive Definite and Positive Semidefinite Matrices80
4.4 Geometric Descriptions(p=2)82
Vectors82
Bivariate Normal Distributions83
4.5 Geometric Descriptions(p=3)87
Vectors87
Trivariate Normal Distributions87
4.6 Geometric Descriptions(p>3)90
Exercises91
Summary91
5.PRINCIPAL COMPONENTS ANALYSIS93
5.1 Reasons for Using Principal Components Analysis93
Data Screening93
Clustering95
Discriminant Analysis95
Regression95
5.3 Principal Components Analysis on the Variance-Covariance Matrix ∑96
5.2 Objectives of Principal Components Analysis96
Principal Component Scores98
Component Loading Vectors98
5.4 Estimation of Principal Components99
Estimation of Principal Component Scores99
5.5 Determining the Number of Principal Components99
Method 1100
Method 2100
5.6 Caveats107
5.7 PCA on the Correlation Matrix P109
Principal Component Scores110
Component Correlation Vectors110
Sample Correlation Matrix110
Determining the Number of Principal Components110
5.8 Testing for Independence of the Original Variables111
5.9 Structural Relationships111
SASR PRINCOMP Procedure112
5.10 Statistical Computing Packages112
Principal Components Analysis Using Factor Analysis Programs118
PCA with SPSS's FACTOR Procedure124
Summary142
Exercises142
6.FACTOR ANALYSIS147
6.1 Objectives of Factor Analysis147
6.3 Some History of Factor Analysis148
6.2 Caveats148
6.4 The Factor Analysis Model150
Assumptions150
Matrix Form of the Factor Analysis Model151
Definitions of Factor Analysis Terminology151
6.5 Factor Analysis Equations151
Nonuniqueness of the Factors152
6.6 Solving the Factor Analysis Equations153
6.7 Choosing the Appropriate Number of Factors155
Objective Criteria156
Subjective Criteria156
6.8 Computer Solutions of the Factor Analysis Equations157
Principal Factor Method on R158
Principal Factor Method with Iteration159
6.9 Rotating Factors170
Examples(m=2)171
Rotation Methods172
The Varimax Rotation Method173
6.10 Oblique Rotation Methods174
6.11 Factor Scores180
Bartlett's Method or the Weighted Least-Squares Method181
Thompson's Method or the Regression Method181
Ad Hoc Methods181
Summary212
Exercises213
7.DISCRIMINANT ANALYSIS217
7.1 Discrimination for Two Multivariate Normal Populations217
A Posterior Probability Rule218
A Mahalanobis Distance Rule218
The Linear Discriminant Function Rule218
A Likelihood Rule218
Sample Discriminant Rules219
Estimating Probabilities of Misclassification220
Resubstitution Estimates220
Estimates from Holdout Data220
Cross-Validation Estimates221
7.2 Cost Functions and Prior Probabilities(Two Populations)229
7.3 A General Discriminant Rule(Two Populations)231
A Cost Function232
Prior Probabilities232
Average Cost of Misclassification232
A Bayes Rule233
Classification Functions233
Unequal Covariance Matrices233
Tricking Computing Packages234
7.4 Discriminant Rules(More than Two Populations)235
Basic Discrimination238
7.5 Variable Selection Procedures245
Forward Selection Procedure245
Backward Elimination Procedure246
Stepwise Selection Procedure246
Recommendations247
Caveats247
7.6 Canonical Discriminant Functions255
The First Canonical Function256
A Second Canonical Function257
Determining the Dimensionality of the Canonical Space260
Discriminant Analysis with Categorical Predictor Variables273
7.7 Nearest Neighbor Discriminant Analysis275
7.8 Classification Trees283
Summary283
Exercises283
8.1 Logistic Regression Model287
8.2 The Logit Transformation287
8.LOGISTIC REGRESSION METHODS287
Model Fitting288
8.3 Variable Selection Methods296
8.4 Logistic Discriminant Analysis(More Than Two Populations)301
Logistic Regression Models301
Model Fitting302
Another SAS LOGISTIC Analysis314
Exercises316
Ruler Distance319
9.CLUSTER ANALYSIS319
9.1 Measures of Similarity and Dissimilarity319
Standardized Ruler Distance320
A Mahalanobis Distance320
Dissimilarity Measures320
9.2 Graphical Aids in Clustering321
Scatter Plots321
9.3 Clustering Methods322
Other Methods322
Andrews'Plots322
Using Principal Components322
Nonhierarchical Clustering Methods323
Hierarchical Clustering323
Nearest Neighbor Method323
A Hierarchical Tree Diagram325
Other Hierarchical Clustering Methods326
Verification of Clustering Methods327
How Many Clusters?327
Comparisons of Clustering Methods327
Beale's F-Type Statistic328
A Pseudo Hotelling's T2 Test329
The Cubic Clustering Criterion329
Clustering Order334
Estimating the Number of Clusters339
Principal Components Plots348
Clustering with SPSS355
SAS's FASTCLUS Procedure369
9.4 Multidimensional Scaling385
Exercises395
10.MEAN VECTORS AND VARIANCE-COVARIANCE MATRICES397
10.1 Inference Procedures for Variance-Covariance Matrices397
A Test for a Specific Variance-Covariance Matrix398
A Test for Sphericity400
A Test for Compound Symmetry403
A Test for the Huynh-Feldt Conditions405
A Test for Independence406
A Test for Independence of Subsets of Variables407
A Test for the Equality of Several Variance-Covariance Matrices408
10.2 Inference Procedures for a Mean Vector408
Hotelling's T2 Statistic409
Hypothesis Test for μ409
Confidence Region for μ409
A More General Result411
Special Case—A Test of Symmetry412
Fitting a Line to Repeated Measures418
A Test for Linear Trend418
Multivariate Quality Control419
10.3 Two Sample Procedures420
Repeated Measures Experiments420
10.4 Profile Analyses431
10.5 Additional Two-Group Analyses432
Paired Samples432
Small Sample Sizes433
Large Sample Sizes433
Unequal Variance-Covariance Matrices433
Summary434
Exercises434
11.MULTIVARIATE ANALYSIS OF VARIANCE439
11.1 MANOVA439
MANOVA Assumptions440
Test Statistics440
Test Comparisons441
Why Do We Use MANOVAs?441
A Conservative Approach to Multiple Comparisons442
11.2 Dimensionality of the Alternative Hypothesis455
11.3 Canonical Variates Analysis456
The First Canonical Variate456
The Second Canonical Variate457
Other Canonical Variates457
11.4 Confidence Regions for Canonical Variates458
Summary485
Exercises485
12.1 Multiple Regression489
12.PREDICTION MODELS AND MULTIVARIATE REGRESSION489
12.2 Canonical Correlation Analysis494
Two Sets of Variables494
The First Canonical Correlation495
The Second Canonical Correlation495
Number of Canonical Correlations496
Estimates496
Hypothesis Tests on the Canonical Correlations497
Interpreting Canonical Functions508
Canonical Correlation Analysis with SPSS511
12.3 Factor Analysis and Regression515
Summary522
Exercises522
APPENDIX A:MATRIX RESULTS525
A.1 Basic Definitions and Rules of Matrix Algebra525
A.2 Quadratic Forms527
A.3 Eigenvalues and Eigenvectors528
A.5 Miscellaneous Results529
A.4 Distances and Angles529
APPENDIX B:WORK ATTITUDES SURVEY531
B.1 Data File Structure536
B.2 SPSS Data Entry Commands538
B.3 SAS Data Entry Commands543
APPENDIX C:FAMILY CONTROL STUDY547
REFERENCES555
Index563