图书介绍

概率论与随机过程PDF|Epub|txt|kindle电子书版本网盘下载

概率论与随机过程
  • 张丽华主编 著
  • 出版社: 北京:北京邮电大学出版社
  • ISBN:9787563545377
  • 出版时间:2015
  • 标注页数:325页
  • 文件大小:50MB
  • 文件页数:334页
  • 主题词:概率论-高等学校-教材;随机过程-高等学校-教材

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

概率论与随机过程PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

Chapter 1 Events and Their Probabilities1

1.1 The History of Probability1

1.2 Experiment,Sample Space and Random Event3

1.2.1 Basic Definitions3

1.2.2 Events as Sets5

1.3 Probabilities Defined on Events8

1.3.1 Classical Probability8

1.3.2 Geometric Probability13

1.3.3 The Frequency Interpretation of Probability16

1.4 Probability Space18

1.4.1 Axiomatic Definition of Probability19

1.4.2 Properties of Probability20

1.5 Conditional Probabilities24

1.5.1 The Definition of Conditional Probability24

1.5.2 The Multiplication Rule28

1.5.3 Total Probability Formula30

1.5.4 Bayes'Theorem32

1.6 Independence of Events37

1.6.1 Independence of Two Events37

1.6.2 Independence of Several Events40

1.6.3 Bernoulli Trials44

1.7 Review45

1.8 Exercises46

Chapter 2 Random Variable54

2.1 The Definition of a Random Variable54

2.2 The Distribution Function of a Random Variable57

2.2.1 The Definition and Properties of Distribution Function57

2.2.2 The Distribution Function of Function of a Random Variable67

2.3 Mathematical Expectation and Variance71

2.3.1 Expectation of a Random Variable71

2.3.2 Expectation of Functions of a Random Variable77

2.3.3 Variance of a Random Variable80

2.3.4 The Application of Expectation and Variation85

2.4 Discrete Random Variables87

2.4.1 Binomial Distribution with Parameters n and p87

2.4.2 Geometric Distribution92

2.4.3 Poisson Distribution with Parametersλ95

2.5 Continuous Random Variables98

2.5.1 Uniform Distribution98

2.5.2 Exponential Distribution102

2.5.3 Normal Distribution107

2.6 Review114

2.7 Exercises117

Chapter 3 Random Vectors126

3.1 Random Vectors and Joint Distributions126

3.1.1 Random Vectors and Joint Distributions127

3.1.2 Discrete Random Vectors129

3.1.3 Continuous Random Vectors134

3.2 Independence of Random Variables141

3.3 Conditional Distributions148

3.3.1 Discrete Case148

3.3.2 Continuous Case150

3.4 One Function of Two Random Variables153

3.4.1 Discrete Case153

3.4.2 Continuous case157

3.5 Transformation of Two Random Variables164

3.6 Numerical Characteristics of Random Vectors167

3.6.1 Expectation of Sums and Products167

3.6.2 Covariance and Correlation170

3.7 Multivariate Distributions178

3.7.1 Distribution Functions of Multiple Random Vectors178

3.7.2 Numerical Characteristics of Random Vectors181

3.7.3 Multiple Normal Distribution186

3.8 Review188

3.9 Exercises191

Chapter 4 Sequences of Random Variables200

4.1 Family of Distribution Functions and Numerical Characteristics201

4.2 Modes of Convergence204

4.3 The Law of Large Numbers207

4.4 The Central Limit Theorem210

4.5 Review214

4.6 Exercises215

Chapter 5 Introduction to Stochastic Processes218

5.1 Definition and Classification218

5.2 The Distribution Family and the Moment Functions222

5.3 The Moments of the Stochastic Processes223

5.3.1 Mean,Autocorrelation and Autocovariance224

5.3.2 Cross-correlation and Cross-covariance227

5.4 Stochastic Analysis228

5.5 Review231

5.6 Exercises231

Chapter 6 Stationary Processes234

6.1 Stationary Processes234

6.1.1 Strict Stationary Processes234

6.1.2 Wide Stationary Processes236

6.1.3 Joint Stationary Processes241

6.2 Ergodicity of Stationary Processes242

6.3 Power Spectral Density of Stationary Processes246

6.3.1 Average Power and Power Spectral Density247

6.3.2 Power Spectral Density and Autocorrelation Function249

6.3.3 Cross-Power Spectral Density252

6.4 Stationary Processes and Linear Systems254

6.5 Review259

6.6 Exercises260

Chapter 7 Finite Markov Chains263

7.1 Basic Concepts263

7.2 Markov Chains Having Two States268

7.3 Higher Order Transition Probabilities and Distributions273

7.4 Invariant Distributions and Ergodic Markov Chain280

7.5 How Does Google Work?286

7.6 Review290

7.7 Exercises291

Chapter 8 Independent-Increment Processes297

8.1 Independent-Increment Processes297

8.2 Poisson Process298

8.3 Gaussian Processes305

8.4 Brownian Motion and Wiener Processes308

8.5 Review311

8.6 Exercises312

Bibliography316

Appendix318

Binom318

Table of Binomial Probabilities319

Table of Poisson Probabilities321

Table of Normal Probabilities324

热门推荐