图书介绍
生物数学 第2版=MATHEMATICAL BIOLOGY SECONDPDF|Epub|txt|kindle电子书版本网盘下载
![生物数学 第2版=MATHEMATICAL BIOLOGY SECOND](https://www.shukui.net/cover/59/32717100.jpg)
- CORRECTED EDITION 著
- 出版社:
- ISBN:
- 出版时间:1998
- 标注页数:0页
- 文件大小:84MB
- 文件页数:784页
- 主题词:
PDF下载
下载说明
生物数学 第2版=MATHEMATICAL BIOLOGY SECONDPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1.Continuous Population Models for Single Species1
1.1 Continuous Growth Models1
1.2 Insect Outbreak Model:Spruce Budworm4
1.3 Delay Models8
1.4 Linear Analysis of Delay Population Models:Periodic Solutions12
1.5 Delay Models in Physiology:Dynamic Diseases15
1.6 Harvesting a Single Natural Population24
1.7 Population Model with Age Distribution29
Exercises33
2.Discrete Population Models for a Single Species36
2.1 Introduction:Simple Models36
2.2 Cobwebbing:A Graphical Procedure of Solution38
2.3 Discrete Logistic Model:Chaos41
2.4 Stability,Periodic Solutions and Bifurcations47
2.5 Discrete Delay Models51
2.6 Fishery Management Model54
2.7 Ecological Implications and Caveats57
Exercises59
3.Continuous Models for Interacting Populations63
3.1 Predator-Prey Models:Lotka-Volterra Systems63
3.2 Complexity and Stability68
3.3 Realistic Predator-Prey Models70
3.4 Analysis of a Predator-Prey Model with Limit Cycle Periodic Behaviour:Parameter Domains of Stability72
3.5 Competition Models:Principle of Competitive Exclusion78
3.6 Mutualism or Symbiosis83
3.7 General Models and Some General and Cautionary Remarks85
3.8 Threshold Phenomena89
Exercises92
4.Discrete Growth Models for Interacting Populations95
4.1 Predator-Prey Models:Detailed Analysis96
4.2 Synchronized Insect Emergence:13 Year Locusts100
4.3 Biological Pest Control:General Remarks106
Exercises107
5.Reaction Kinetics109
5.1 Enzyme Kinetics:Basic Enzyme Reaction109
5.2 Michaelis-Menten Theory:Detailed Analysis and the Pseudo-Steady State Hypothesis111
5.3 Cooperative Phenomena118
5.4 Autocatalysis,Activation and Inhibition122
5.5 Multiple Steady States,Mushrooms and Isolas130
Exercises137
6.Biological Oscillators and Switches140
6.1 Motivation,History and Background140
6.2 Feedback Control Mechanisms143
6.3 Oscillations and Switches Involving Two or More Species:General Qualitative Results148
6.4 Simple Two-Species Oscillators:Parameter Domain Determination for Oscillations156
6.5 Hodgkin-Huxley Theory of Nerve Membranes:FitzHugh-Nagumo Model161
6.6 Modelling the Control of Testosterone Secretion166
Exercises175
7.Belousov-Zhabotinskii Reaction179
7.1 Belousov Reaction and the Field-Noyes(FN)Model179
7.2 Linear Stability Analysis of the FN Model and Existence of Limit Cycle Solutions183
7.3 Non-local Stability of the FN Model187
7.4 Relaxation Oscillators:Approximation for the Belousov-Zhabotinskii Reaction190
7.5 Analysis of a Relaxation Model for Limit Cycle Oscillations in the Belousov-Zhabotinskii Reaction192
Exercises199
8.Perturbed and Coupled Oscillators and Black Holes200
8.1 Phase Resetting in Oscillators200
8.2 Phase Resetting Curves204
8.3 Black Holes208
8.4 Black Holes in Real Biological Oscillators210
8.5 Coupled Oscillators:Motivation and Model System215
8.6 Singular Perturbation Analysis:Preliminary Transformation217
8.7 Singular Perturbation Analysis:Transformed System220
8.8 Singular perturbation Analysis:Two-Time Expansion223
8.9 Analysis of the Phase Shift Equation and Application to Coupled Belousov-Zhabotinskii Reactions227
Exercises231
9.Reaction Diffusion,Chemotaxis and Non-local Mechanisms232
9.1 Simple Random Walk Derivation of the Diffusion Equation232
9.2 Reaction Diffusion Equations236
9.3 Models for Insect Dispersal238
9.4 Chemotaxis241
9.5 Non-local Effects and Long Range Diffusion244
9.6 Cell Potential and Energy Approach to Diffusion249
Exercises252
10.Oscillator Generated Wave Phenomena and Central Pattern Generators254
10.1 Kinematic Waves in the Belousov-Zhabotinskii Reaction254
10.2 Central Pattern Generator:Experimental Facts in the Swimming of Fish258
10.3 Mathematical Model for the Central Pattern Generator261
10.4 Analysis of the Phase-Coupled Model System268
Exercises273
11.Biological Waves:Single Species Models274
11.1 Background and the Travelling Wave Form274
11.2 Fisher Equation and Propagating Wave Solutions277
11.3 Asymptotic Solution and Stability of Wavefront Solutions of the Fisher Equation281
11.4 Density-Dependent Diffusion Reaction Diffusion Models and Some Exact Solutions286
11.5 Waves in Models with Multi-Steady State Kinetics:The Spread and Control of an Insect Population297
11.6 Calcium Waves on Amphibian Eggs:Activation Waves on Medaka Eggs305
Exercises309
12.Biological Waves:Multi-species Reaction Diffusion Models311
12.1 Intuitive Expectations311
12.2 Waves of Pursuit and Evasion in Predator-Prey Systems315
12.3 Travelling Fronts in the Belousov-Zhabotinskii Reaction322
12.4 Waves in Excitable Media328
12.5 Travelling Wave Trains in Reaction Diffusion Systems with Oscillatory Kinetics336
12.6 Linear Stability of Wave Train Solutions of λ-ω Systems340
12.7 Spiral Waves343
12.8 Spiral Wave Solutions of λ-ω Reaction Diffusion Systems350
Exercises356
13.Travelling Waves in Reaction Diffusion Systems with Weak Diffusion:Analytical Techniques and Results360
13.1 Reaction Diffusion System with Limit Cycle Kinetics and Weak Diffusion:Model and Transformed System360
13.2 Singular Perturbation Analysis:The Phase Satisfies Burgers'Equation363
13.3 Travelling Wavetrain Solutions for Reaction Diffusion Systems with Limit Cycle Kinetics and Weak Diffusion:Comparison with Experiment367
14.Spatial Pattern Formation with Reaction/Population Interaction Diffusion Mechanisms372
14.1 Role of Pattern in Developmental Biology372
14.2 Reaction Diffusion(Turing)Mechanisms375
14.3 Linear Stability Analysis and Evolution of Spatial Pattern:General Conditions for Diffusion-Driven Instability380
14.4 Detailed Analysis of Pattern Initiation in a Reaction Diffusion Mechanism387
14.5 Dispersion Relation,Turing Space,Scale and Geometry Effects in Pattern Formation in Morphogenetic Models397
14.6 Mode Selection and the Dispersion Relation408
14.7 Pattern Generation with Single Species Models:Spatial Heterogeneity with the Spruce Budworm Model414
14.8 Spatial Patterns in Scalar Population Interaction-Reaction Diffusion Equations with Convection:Ecological Control Strategies419
14.9 Nonexistence of Spatial Patterns in Reaction Diffusion Systems:General and Particular Results424
Exercises430
15.Animal Coat Patterns and Other Practical Applications of Reaction Diffusion Mechanisms435
15.1 Mammalian Coat Patterns-‘How the Leopard Got Its Spots’436
15.2 A Pattern Formation Mechanism for Butterfly Wing Patterns448
15.3 Modelling Hair Patterns in a Whorl in Acetabularia468
16.Neural Models of Pattern Formation481
16.1 Spatial Patterning in Neural Firing with a Simple Activation Inhibition Model481
16.2 A Mechanism for Stripe Formation in the Visual Cortex489
16.3 A Model for the Brain Mechanism Underlying Visual Hallucination Patterns494
16.4 Neural Activity Model for Shell Patterns505
Exercises523
17.Mechanical Models for Generating Pattern and Form in Development525
17.1 Introduction and Background Biology525
17.2 Mechanical Model for Mesenchymal Morphogenesis528
17.3 Linear Analysis,Dispersion Relation and Pattern Formation Potential538
17.4 Simple Mechanical Models Which Generate Spatial Patterns with Complex Dispersion Relations542
17.5 Periodic Patterns of Feather Germs554
17.6 Cartilage Condensations in Limb Morphogenesis558
17.7 Mechanochemical Model for the Epidermis566
17.8 Travelling Wave Solutions of the Cytogel Model572
17.9 Formation of Microvilli579
17.10 Other Applications of Mechanochemical Models586
Exercises590
18.Evolution and Developmental Programmes593
18.1 Evolution and Morphogenesis593
18.2 Evolution and Morphogenetic Rules in Cartilage Formation in the Vertebrate Limb599
18.3 Developmental Constraints,Morphogenetic Rules and the Consequences for Evolution606
19.Epidemic Models and the Dynamics of Infectious Diseases610
19.1 Simple Epidemic Models and Practical Applications611
19.2 Modelling Venereal Diseases619
19.3 Multigroup Model for Gonorrhea and Its Control623
19.4 AIDS:Modelling the Transmission Dynamics of the Human Immunodeficiency Virus(HIV)624
19.5 Modelling the Population Dynamics of Acquired Immunity to Parasite Infection630
19.6 Age Dependent Epidemic Model and Threshold Criterion640
19.7 Simple Drug Use Epidemic Model and Threshold Analysis645
Exercises649
20.Geographic Spread of Epidemics651
20.1 Simple Model for the Spatial Spread of an Epidemic651
20.2 Spread of the Black Death in Europe 1347-1350655
20.3 The Spatial Spread of Rabies Among Foxes Ⅰ:Background and Simple Model659
20.4 The Spatial Spread of Rabies Among Foxes Ⅱ:Three Species(SIR)Model666
20.5 Control Strategy Based on Wave Propagation into a Non-epidemic Region:Estimate of Width of a Rabies Barrier681
20.6 Two-Dimensional Epizootic Fronts and Effects of Variable Fox Densities:Quantitative Predictions for a Rabies Outbreak in England689
Exercises696
Appendices697
1.Phase Plane Analysis697
2.Routh-Hurwitz Conditions,Jury Conditions,Descartes'Rule of Signs and Exact Solutions of a Cubic702
3.Hopf Bifurcation Theorem and Limit Cycles706
4.General Results for the Laplacian Operator in Bounded Domains720
Bibliography723
Index745