图书介绍

半导体纳米结构(影印版)=SEMICONDUCTOR NANOSTRUCTURESPDF|Epub|txt|kindle电子书版本网盘下载

半导体纳米结构(影印版)=SEMICONDUCTOR NANOSTRUCTURES
  • (德)宾贝格(D.BIMBERG)主编 著
  • 出版社: 北京大学出版社
  • ISBN:
  • 出版时间:2013
  • 标注页数:357页
  • 文件大小:80MB
  • 文件页数:380页
  • 主题词:

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

半导体纳米结构(影印版)=SEMICONDUCTOR NANOSTRUCTURESPDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 Thermodynamics and Kinetics of Quantum Dot Growth&Vitaly Shchukin,Eckehard Sch?ll and Peter Kratzer1

1.1 Introduction2

1.1.1 Length and Time Scales3

1.1.2 Multiscale Approach to the Modeling of Nanostructures4

1.2 Atomistic Aspects of Growth5

1.2.1 Diffusion of Ga Atoms on GaAs(001)5

1.2.2 Energetics of As2 Incorporation During Growth5

1.2.3 Kinetic Monte Carlo Simulation of GaAs Homoepitaxy6

1.2.4 Wetting Layer Evolution9

1.3 Size and Shapes ofIndividual Quantum Dots11

1.3.1 Hybrid Approach to Calculation of the Equilibrium Shape of Individual Quantum Dots11

1.3.2 Role of High-Index Facets in the Shape of Quantum Dots13

1.3.3 Shape Transition During Quantum Dot Growth14

1.3.4 Constraint Equilibrium of Quantum Dots with a Wetting Layer15

1.4 Thermodynamics and Kinetics of Quantum Dot Ensembles19

1.4.1 Equilibrium Volume of Strained Islands versus Ostwald Ripening19

1.4.2 Crossover from Kinetically Controlled to Thermodynamically Controlled Growth ofQuantum Dots22

1.4.3 Tunable Metastability of Quantum Dot Arrays25

1.4.4 Evolution Mechanisms in Dense Arrays of Elastically Interacting Quantum Dots27

1.5 Quantum Dot Stacks29

1.5.1 Transition between Vertically Correlated and Vertically Anticorrelated Quantum Dot Growth29

1.5.2 Finite Size Effect:Abrupt Transitions between Correlated and Anticorrelated Growth31

1.5.3 Reduction of a Size of a Critical Nucleus in the Second Quantum Dot Layer32

1.6 Summary and Outlook34

References35

2 Control of Self-Organized In(Ga)As/GaAs Quantum Dot Growth&Udo W.Pohl and André Strittmatter41

2.1 Introduction41

2.2 Evolution and Strain Engineering of InGaAs/GaAs Quantum Dots42

2.2.1 Evolution of InGaAs Dots42

2.2.2 Engineering of Single and Stacked InGaAs QD Layers46

2.3 Growth Control of Equally Shaped InAs/GaAs Quantum Dots50

2.3.1 Formation of Self-Similar Dots with a Multimodal Size Distribution51

2.3.2 Kinetic Description of Multimodal Dot-Ensemble Formation54

2.4 Epitaxy of GaSb/GaAs Quantum Dots56

2.4.1 Onset and Dynamics of GaSb/GaAs Quantum-Dot Formation56

2.4.2 Structure ofGaSb/GaAs Quantum Dots58

2.5 Device Applications of InGaAs Quantum Dots60

2.5.1 Edge-Emitting Lasers60

2.5.2 Surface-Emitting Lasers61

2.6 Conclusion62

References63

3 In-Situ Monitoring for Nano-Structure Growth in MOVPE&Markus Pristovsek and Wolfgang Richter67

3.1 Introduction67

3.2 Reflectance69

3.3 Reflectance Anisotropy Spectroscopy(RAS)71

3.3.1 RAS Spectra and Surface Reconstruction72

3.3.2 Monolayer Oscillations74

3.3.3 Monitoring of Carrier Concentration79

3.4 Scanning Tunneling Microscopy(STM)82

3.5 Conclusion84

References85

4 Bottom-up Approach to the Nanopatterning of Si(001)&R.Koch87

4.1 Quantum Dot Growth on Semiconductor Templates87

4.2 (2×n)Reconstruction of Si(001)88

4.3 Monte Carlo Simulations on the (2×n)Formation90

4.4 Scanning Tunneling Microscopy Results92

4.5 Summary and Outlook94

References95

5 Structural Characterisation of Quantum Dots by X-Ray Diffraction and TEM&R.K?hler,W.Neumann,M.Schmidbauer,M.Hanke,D.Grigoriev,P.Sch?fer,H.Kirmse,I.H?usler and R.Schneider97

5.1 Introduction97

5.2 Liquid Phase Epitaxy of SiGe/Si:A Model System for the Stranski-Krastanow Process99

5.2.1 Dot Evolution in a Close-to-Equilibrium Regime99

5.3 (In,Ga)As Quantum Dots on GaAs103

5.3.1 Shape,Size,Strain and Composition Gradient in InGaAs QD Arrays103

5.3.2 Chemical Composition of(In,Ga)As QDs Determined by TEM107

5.3.3 Controlling 3D Ordering in(In,Ga)As QD Arrays through GaAs Surface Orientation109

5.4 Ga(Sb,As)Quantum Dots on GaAs113

5.4.1 Structural Characterisation of Ga(Sb,As)QDs by High-Resolution TEM Imaging117

5.4.2 Chemical Characterisation of Ga(Sb,As)QDs by HAADF STEM Imaging118

References119

6 The Atomic Structure of Quantum Dots&Mario D?hne,Holger Eisele and Karl Jacobi123

6.1 Introduction123

6.2 Experimental Details124

6.3 STM Studies of InAs Quantum Dots on the Growth Surface124

6.4 XSTM Studies of Buried Nanostructures127

6.4.1 InAs Quantum Dots127

6.4.2 InGaAs Quantum Dots131

6.4.3 GaSb Quantum Dots134

6.5 Conclusion135

References136

7 Theory of Excitons in InGaAs/GaAs Quantum Dots&Andrei Schliwa and Momme Winkelnkemper139

7.1 Introduction139

7.2 Interrelation of QD-Structure,Strain and Piezoelectricity,and Coulomb Interaction140

7.2.1 The Binding Energies of the Few Particle Complexes140

7.3 Method of Calculation143

7.3.1 Calculation of Strain144

7.3.2 Piezoelectricity and the Reduction of Lateral Symmetry145

7.3.3 Single Particle States147

7.3.4 Many-Particle States148

7.3.5 The Configuration Interaction Model148

7.3.6 Interband Spectra150

7.4 The Investigated Structures:Variation of Size,Shape and Composition150

7.5 The Impact of QD Size151

7.5.1 The Role of the Piezoelectric Field153

7.6 The Aspect Ratio155

7.6.1 Vertical Aspect Ratio155

7.6.2 Lateral Aspect Ratio157

7.7 Different Composition Profiles157

7.7.1 Inverted Cone-Like Composition Profile157

7.7.2 Annealed QDs159

7.7.3 InGaAs QDs with Uniforrn Composition159

7.8 Correlation vs.QD Size,Shape and Particle Type159

7.9 Conclusions162

References163

8 Phonons in Quantum Dots and Their Role in Exciton Dephasing&F.Grosse,E.A.Muljarov and R.Zimmermann165

8.1 Introduction165

8.2 Structural Properties of Semiconductor Nanostructures166

8.3 Theory of Acoustic Phonons in Quantum Dots166

8.3.1 Continuum Elasticity Model of Phonons167

8.3.2 Phonons in Quantum Dots170

8.4 Exciton-Acoustic Phonon Coupling in Quantum Dots171

8.5 Dephasing of the Exciton Polarization in Quantum Dots173

8.5.1 Single Exciton Level:Independent Boson Model174

8.5.2 Multilevel System:Real and Virtual Phonon-Assisted Transitions176

8.5.3 Application to Coupled Quantum Dots182

8.6 Summary184

References185

9 Theory of the Optical Response of Single and Coupled Semiconductor Quantum Dots&C.Weber,M.Richter,S.Ritter and A.Knorr189

9.1 Introduction189

9.2 Theory190

9.2.1 Quantum Dot Model190

9.2.2 Hamiltonian191

9.2.3 Mathematical Formalisms193

9.3 Single Quantum Dot Response196

9.3.1 Linear Absorption Spectra and Quantum Optics196

9.3.2 Semiclassical Nonlinear Dynamics199

9.4 Two Coupled Quantum Dots201

9.4.1 Absorption Spectra202

9.4.2 Excitation Transfer202

9.4.3 Rabi Oscillations203

9.4.4 Pump-Probe/Differential Transmission Spectra204

9.5 Multiple Quantum Dots205

9.5.1 Four-Wave-Mixing:Photon Echo in Quantum Dot Ensembles205

9.5.2 Absorption of Multiple Coupled Quantum Dots205

9.5.3 Energy Transfer of Multiple Coupled Quantum Dots206

9.6 Conclusion206

References207

10 Theory of Nonlinear Transport for Ensembles of Quantum Dots&G.Kieβlich,A.Wacker and E.Sch?ll211

10.1 Introduction211

10.2 Coulomb Interaction within a Quantum Dot Layer211

10.3 Transport in Quantum Dot Stacks213

10.4 Current Fluctuations and Shot Noise214

10.5 Full Counting Statistics and Decoherence in Coupled Quantum Dots216

10.6 Conclusion218

References219

11 Quantum Dots for Memories&M.Geller and A.Marent221

11.1 Introduction221

11.2 Semiconductor Memories222

11.2.1 Dynamic Random Access Memory(DRAM)222

11.2.2 Nonvolatile Semiconductor Memories(Flash)223

11.2.3 A QD-based Memory Cell224

11.3 Charge Carrier Storage in Quantum Dots226

11.3.1 Experimental Technique226

11.3.2 Carrier Storage in InGaAs/GaAs Quantum Dots228

11.3.3 Hole Storage in GaSb/GaAs Quantum Dots229

11.3.4 InGaAs/GaAs Quantum Dots with Additional AlGaAs Barrier230

11.4 Conclusion and Outlook233

References235

12 Visible-Bandgap Ⅱ-Ⅵ Quantum Dot Heterostructures&Ilya Akimov,Joachim Puls,Michael Rabe and Fritz Henneberger237

12.1 Introduction237

12.2 Epitaxial Growth238

12.3 Few-Particles States and Their Fine Structure241

12.3.1 Excitons and Biexcitons241

12.3.2 Trions in Charged Quantum Dots243

12.4 Coherent Control of the Exciton-Biexciton System245

12.5 Spin Relaxation of Excitons,Holes,and Electrons247

12.5.1 Exciton Quantum Coherence247

12.5.2 Hole Spin Lifetime248

12.5.3 Spin Dynamics of the Resident Electron249

12.6 Diluted Magnetic Quantum Dots251

References253

13 Narrow-Gap Nanostructures in Strong Magnetic Fields&T.Tran-Anh and M.Ortenberg255

13.1 Introduction255

13.2 Materials:HgSe/HgSe:Fe256

13.3 Fabrication ofHgSe/HgSe:Fe Nanostructures256

13.3.1 Quantum Wells257

13.3.2 Roof-Ridge Quantum Wires258

13.3.3 Quantum Dots259

13.4 Electronic Characterization of the HgSe/HgSe:Fe Nano-Structures in Strong Magnetic Fields262

13.4.1 High-Field Magneto Transport262

13.4.2 Infrared Magneto-Resonance Spectroscopy263

13.5 Summary267

References267

14 Optical Properties of Ⅲ-Ⅴ Quantum Dots&Udo W.Pohl,Sven Rodt and Axel Hoffmann269

14.1 Introduction269

14.2 Confined States and Many-Particle Effects270

14.2.1 Renormalization270

14.2.2 Phonon Interaction274

14.2.3 Electronic Tuning by Strain Engineering276

14.2.4 Multimodal InAs/GaAs Quantum Dots278

14.3 Single InAs/GaAs Quantum Dots281

14.3.1 Spectral Diffusion281

14.3.2 Size-Dependent Anisotropic Exchange Interaction282

14.3.3 Binding Energies of Excitonic Complexes285

14.3.4 Data Storage Using Confined Trions286

14.3.5 Electronic Tuning by Annealing287

14.4 Optical Properties ofInGaN/GaN Quantum Dots288

14.4.1 Time-Resolved Studies on Quantum Dot Ensembles289

14.4.2 Single-Dot Spectroscopy292

14.5 Summary296

References298

15 Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum Dots&Christoph Lienau and Thomas Elsaesser301

15.1 Introduction301

15.2 Interface Quantum Dots303

15.3 Coherent Spectroscopy of Interface Quantum Dots:Experimental Technique305

15.4 Coherent Controlin Single Interface Quantum Dots308

15.4.1 Ultrafast Optical Nonlinearities of Single Interface Quantum Dots308

15.4.2 Rabi Oscillations in a Quantum Dot312

15.4.3 Optical Stark Effect:Ultrafast Control of Single Exciton Polarizations315

15.5 Coupling Two Quantum Dots via the Dipole-Dipole Interaction319

15.6 Summary and Conclusions323

References325

16 Single-Photon Generation from Single Quantum Dots&Matthias Scholz,Thomas Aichele and Oliver Benson329

16.1 Introduction329

16.2 Single Quantum Dots as Single-Photon Emitters331

16.2.1 Photon Statistics of Single-Photon Emitters331

16.2.2 Micro-Photoluminescence332

16.2.3 Single Photons from InP Quantum Dots333

16.3 Multiphoton Emission from Single Quantum Dots334

16.4 Realization of the Ultimate Limit of a Light Emitting Diode339

16.5 Applications in Quantum Information Processing343

16.5.1 Quantum Key Distribution343

16.5.2 Quantum Computing344

16.6 Outlook346

References347

Index351

热门推荐