图书介绍
半导体纳米结构(影印版)=SEMICONDUCTOR NANOSTRUCTURESPDF|Epub|txt|kindle电子书版本网盘下载
- (德)宾贝格(D.BIMBERG)主编 著
- 出版社: 北京大学出版社
- ISBN:
- 出版时间:2013
- 标注页数:357页
- 文件大小:80MB
- 文件页数:380页
- 主题词:
PDF下载
下载说明
半导体纳米结构(影印版)=SEMICONDUCTOR NANOSTRUCTURESPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Thermodynamics and Kinetics of Quantum Dot Growth&Vitaly Shchukin,Eckehard Sch?ll and Peter Kratzer1
1.1 Introduction2
1.1.1 Length and Time Scales3
1.1.2 Multiscale Approach to the Modeling of Nanostructures4
1.2 Atomistic Aspects of Growth5
1.2.1 Diffusion of Ga Atoms on GaAs(001)5
1.2.2 Energetics of As2 Incorporation During Growth5
1.2.3 Kinetic Monte Carlo Simulation of GaAs Homoepitaxy6
1.2.4 Wetting Layer Evolution9
1.3 Size and Shapes ofIndividual Quantum Dots11
1.3.1 Hybrid Approach to Calculation of the Equilibrium Shape of Individual Quantum Dots11
1.3.2 Role of High-Index Facets in the Shape of Quantum Dots13
1.3.3 Shape Transition During Quantum Dot Growth14
1.3.4 Constraint Equilibrium of Quantum Dots with a Wetting Layer15
1.4 Thermodynamics and Kinetics of Quantum Dot Ensembles19
1.4.1 Equilibrium Volume of Strained Islands versus Ostwald Ripening19
1.4.2 Crossover from Kinetically Controlled to Thermodynamically Controlled Growth ofQuantum Dots22
1.4.3 Tunable Metastability of Quantum Dot Arrays25
1.4.4 Evolution Mechanisms in Dense Arrays of Elastically Interacting Quantum Dots27
1.5 Quantum Dot Stacks29
1.5.1 Transition between Vertically Correlated and Vertically Anticorrelated Quantum Dot Growth29
1.5.2 Finite Size Effect:Abrupt Transitions between Correlated and Anticorrelated Growth31
1.5.3 Reduction of a Size of a Critical Nucleus in the Second Quantum Dot Layer32
1.6 Summary and Outlook34
References35
2 Control of Self-Organized In(Ga)As/GaAs Quantum Dot Growth&Udo W.Pohl and André Strittmatter41
2.1 Introduction41
2.2 Evolution and Strain Engineering of InGaAs/GaAs Quantum Dots42
2.2.1 Evolution of InGaAs Dots42
2.2.2 Engineering of Single and Stacked InGaAs QD Layers46
2.3 Growth Control of Equally Shaped InAs/GaAs Quantum Dots50
2.3.1 Formation of Self-Similar Dots with a Multimodal Size Distribution51
2.3.2 Kinetic Description of Multimodal Dot-Ensemble Formation54
2.4 Epitaxy of GaSb/GaAs Quantum Dots56
2.4.1 Onset and Dynamics of GaSb/GaAs Quantum-Dot Formation56
2.4.2 Structure ofGaSb/GaAs Quantum Dots58
2.5 Device Applications of InGaAs Quantum Dots60
2.5.1 Edge-Emitting Lasers60
2.5.2 Surface-Emitting Lasers61
2.6 Conclusion62
References63
3 In-Situ Monitoring for Nano-Structure Growth in MOVPE&Markus Pristovsek and Wolfgang Richter67
3.1 Introduction67
3.2 Reflectance69
3.3 Reflectance Anisotropy Spectroscopy(RAS)71
3.3.1 RAS Spectra and Surface Reconstruction72
3.3.2 Monolayer Oscillations74
3.3.3 Monitoring of Carrier Concentration79
3.4 Scanning Tunneling Microscopy(STM)82
3.5 Conclusion84
References85
4 Bottom-up Approach to the Nanopatterning of Si(001)&R.Koch87
4.1 Quantum Dot Growth on Semiconductor Templates87
4.2 (2×n)Reconstruction of Si(001)88
4.3 Monte Carlo Simulations on the (2×n)Formation90
4.4 Scanning Tunneling Microscopy Results92
4.5 Summary and Outlook94
References95
5 Structural Characterisation of Quantum Dots by X-Ray Diffraction and TEM&R.K?hler,W.Neumann,M.Schmidbauer,M.Hanke,D.Grigoriev,P.Sch?fer,H.Kirmse,I.H?usler and R.Schneider97
5.1 Introduction97
5.2 Liquid Phase Epitaxy of SiGe/Si:A Model System for the Stranski-Krastanow Process99
5.2.1 Dot Evolution in a Close-to-Equilibrium Regime99
5.3 (In,Ga)As Quantum Dots on GaAs103
5.3.1 Shape,Size,Strain and Composition Gradient in InGaAs QD Arrays103
5.3.2 Chemical Composition of(In,Ga)As QDs Determined by TEM107
5.3.3 Controlling 3D Ordering in(In,Ga)As QD Arrays through GaAs Surface Orientation109
5.4 Ga(Sb,As)Quantum Dots on GaAs113
5.4.1 Structural Characterisation of Ga(Sb,As)QDs by High-Resolution TEM Imaging117
5.4.2 Chemical Characterisation of Ga(Sb,As)QDs by HAADF STEM Imaging118
References119
6 The Atomic Structure of Quantum Dots&Mario D?hne,Holger Eisele and Karl Jacobi123
6.1 Introduction123
6.2 Experimental Details124
6.3 STM Studies of InAs Quantum Dots on the Growth Surface124
6.4 XSTM Studies of Buried Nanostructures127
6.4.1 InAs Quantum Dots127
6.4.2 InGaAs Quantum Dots131
6.4.3 GaSb Quantum Dots134
6.5 Conclusion135
References136
7 Theory of Excitons in InGaAs/GaAs Quantum Dots&Andrei Schliwa and Momme Winkelnkemper139
7.1 Introduction139
7.2 Interrelation of QD-Structure,Strain and Piezoelectricity,and Coulomb Interaction140
7.2.1 The Binding Energies of the Few Particle Complexes140
7.3 Method of Calculation143
7.3.1 Calculation of Strain144
7.3.2 Piezoelectricity and the Reduction of Lateral Symmetry145
7.3.3 Single Particle States147
7.3.4 Many-Particle States148
7.3.5 The Configuration Interaction Model148
7.3.6 Interband Spectra150
7.4 The Investigated Structures:Variation of Size,Shape and Composition150
7.5 The Impact of QD Size151
7.5.1 The Role of the Piezoelectric Field153
7.6 The Aspect Ratio155
7.6.1 Vertical Aspect Ratio155
7.6.2 Lateral Aspect Ratio157
7.7 Different Composition Profiles157
7.7.1 Inverted Cone-Like Composition Profile157
7.7.2 Annealed QDs159
7.7.3 InGaAs QDs with Uniforrn Composition159
7.8 Correlation vs.QD Size,Shape and Particle Type159
7.9 Conclusions162
References163
8 Phonons in Quantum Dots and Their Role in Exciton Dephasing&F.Grosse,E.A.Muljarov and R.Zimmermann165
8.1 Introduction165
8.2 Structural Properties of Semiconductor Nanostructures166
8.3 Theory of Acoustic Phonons in Quantum Dots166
8.3.1 Continuum Elasticity Model of Phonons167
8.3.2 Phonons in Quantum Dots170
8.4 Exciton-Acoustic Phonon Coupling in Quantum Dots171
8.5 Dephasing of the Exciton Polarization in Quantum Dots173
8.5.1 Single Exciton Level:Independent Boson Model174
8.5.2 Multilevel System:Real and Virtual Phonon-Assisted Transitions176
8.5.3 Application to Coupled Quantum Dots182
8.6 Summary184
References185
9 Theory of the Optical Response of Single and Coupled Semiconductor Quantum Dots&C.Weber,M.Richter,S.Ritter and A.Knorr189
9.1 Introduction189
9.2 Theory190
9.2.1 Quantum Dot Model190
9.2.2 Hamiltonian191
9.2.3 Mathematical Formalisms193
9.3 Single Quantum Dot Response196
9.3.1 Linear Absorption Spectra and Quantum Optics196
9.3.2 Semiclassical Nonlinear Dynamics199
9.4 Two Coupled Quantum Dots201
9.4.1 Absorption Spectra202
9.4.2 Excitation Transfer202
9.4.3 Rabi Oscillations203
9.4.4 Pump-Probe/Differential Transmission Spectra204
9.5 Multiple Quantum Dots205
9.5.1 Four-Wave-Mixing:Photon Echo in Quantum Dot Ensembles205
9.5.2 Absorption of Multiple Coupled Quantum Dots205
9.5.3 Energy Transfer of Multiple Coupled Quantum Dots206
9.6 Conclusion206
References207
10 Theory of Nonlinear Transport for Ensembles of Quantum Dots&G.Kieβlich,A.Wacker and E.Sch?ll211
10.1 Introduction211
10.2 Coulomb Interaction within a Quantum Dot Layer211
10.3 Transport in Quantum Dot Stacks213
10.4 Current Fluctuations and Shot Noise214
10.5 Full Counting Statistics and Decoherence in Coupled Quantum Dots216
10.6 Conclusion218
References219
11 Quantum Dots for Memories&M.Geller and A.Marent221
11.1 Introduction221
11.2 Semiconductor Memories222
11.2.1 Dynamic Random Access Memory(DRAM)222
11.2.2 Nonvolatile Semiconductor Memories(Flash)223
11.2.3 A QD-based Memory Cell224
11.3 Charge Carrier Storage in Quantum Dots226
11.3.1 Experimental Technique226
11.3.2 Carrier Storage in InGaAs/GaAs Quantum Dots228
11.3.3 Hole Storage in GaSb/GaAs Quantum Dots229
11.3.4 InGaAs/GaAs Quantum Dots with Additional AlGaAs Barrier230
11.4 Conclusion and Outlook233
References235
12 Visible-Bandgap Ⅱ-Ⅵ Quantum Dot Heterostructures&Ilya Akimov,Joachim Puls,Michael Rabe and Fritz Henneberger237
12.1 Introduction237
12.2 Epitaxial Growth238
12.3 Few-Particles States and Their Fine Structure241
12.3.1 Excitons and Biexcitons241
12.3.2 Trions in Charged Quantum Dots243
12.4 Coherent Control of the Exciton-Biexciton System245
12.5 Spin Relaxation of Excitons,Holes,and Electrons247
12.5.1 Exciton Quantum Coherence247
12.5.2 Hole Spin Lifetime248
12.5.3 Spin Dynamics of the Resident Electron249
12.6 Diluted Magnetic Quantum Dots251
References253
13 Narrow-Gap Nanostructures in Strong Magnetic Fields&T.Tran-Anh and M.Ortenberg255
13.1 Introduction255
13.2 Materials:HgSe/HgSe:Fe256
13.3 Fabrication ofHgSe/HgSe:Fe Nanostructures256
13.3.1 Quantum Wells257
13.3.2 Roof-Ridge Quantum Wires258
13.3.3 Quantum Dots259
13.4 Electronic Characterization of the HgSe/HgSe:Fe Nano-Structures in Strong Magnetic Fields262
13.4.1 High-Field Magneto Transport262
13.4.2 Infrared Magneto-Resonance Spectroscopy263
13.5 Summary267
References267
14 Optical Properties of Ⅲ-Ⅴ Quantum Dots&Udo W.Pohl,Sven Rodt and Axel Hoffmann269
14.1 Introduction269
14.2 Confined States and Many-Particle Effects270
14.2.1 Renormalization270
14.2.2 Phonon Interaction274
14.2.3 Electronic Tuning by Strain Engineering276
14.2.4 Multimodal InAs/GaAs Quantum Dots278
14.3 Single InAs/GaAs Quantum Dots281
14.3.1 Spectral Diffusion281
14.3.2 Size-Dependent Anisotropic Exchange Interaction282
14.3.3 Binding Energies of Excitonic Complexes285
14.3.4 Data Storage Using Confined Trions286
14.3.5 Electronic Tuning by Annealing287
14.4 Optical Properties ofInGaN/GaN Quantum Dots288
14.4.1 Time-Resolved Studies on Quantum Dot Ensembles289
14.4.2 Single-Dot Spectroscopy292
14.5 Summary296
References298
15 Ultrafast Coherent Spectroscopy of Single Semiconductor Quantum Dots&Christoph Lienau and Thomas Elsaesser301
15.1 Introduction301
15.2 Interface Quantum Dots303
15.3 Coherent Spectroscopy of Interface Quantum Dots:Experimental Technique305
15.4 Coherent Controlin Single Interface Quantum Dots308
15.4.1 Ultrafast Optical Nonlinearities of Single Interface Quantum Dots308
15.4.2 Rabi Oscillations in a Quantum Dot312
15.4.3 Optical Stark Effect:Ultrafast Control of Single Exciton Polarizations315
15.5 Coupling Two Quantum Dots via the Dipole-Dipole Interaction319
15.6 Summary and Conclusions323
References325
16 Single-Photon Generation from Single Quantum Dots&Matthias Scholz,Thomas Aichele and Oliver Benson329
16.1 Introduction329
16.2 Single Quantum Dots as Single-Photon Emitters331
16.2.1 Photon Statistics of Single-Photon Emitters331
16.2.2 Micro-Photoluminescence332
16.2.3 Single Photons from InP Quantum Dots333
16.3 Multiphoton Emission from Single Quantum Dots334
16.4 Realization of the Ultimate Limit of a Light Emitting Diode339
16.5 Applications in Quantum Information Processing343
16.5.1 Quantum Key Distribution343
16.5.2 Quantum Computing344
16.6 Outlook346
References347
Index351