图书介绍
OPERATIONS RESEARCH:AN INTRODUCTIONPDF|Epub|txt|kindle电子书版本网盘下载
- 著
- 出版社: PEARSON EDUCATION,INC
- ISBN:0130323748
- 出版时间:2003
- 标注页数:830页
- 文件大小:269MB
- 文件页数:847页
- 主题词:
PDF下载
下载说明
OPERATIONS RESEARCH:AN INTRODUCTIONPDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
Chapter 1 What Is Operations Research?1
1.1 Operations Research Models1
1.2 Solving the OR Model4
1.3 Queuing and Simulation Models5
1.4 Art of Modeling5
1.5 More Than Just Mathematics6
1.6 Phases of an OR Study8
1.7 About This Book9
Chapter 2 Introduction to Linear Programming11
2.1 Two-Variable LP Model11
2.2 Graphical LP Solution14
2.2.1 Solution of a Maximization Model15
2.2.2 Solution of a Minimization Model18
2.2.3 Graphical Solution with TORA20
2.3 Graphical Sensitivity Analysis23
2.3.1 Changes in the Objective Function Coefficients24
2.3.2 Change in Availability of Resources27
2.3.3 Unit Worth of a Resource28
2.4 Computer Solution of LP Problems33
2.4.1 LP Solution with TORA33
2.4.2 LP Solution with Excel Solver36
2.4.3 LP Solution with LINGO and AMPL38
2.5 Analysis of Selected LP Models47
Selected References66
Comprehensive Problems67
Chapter 3 The SimplexMethod71
3.1 LP Solution Space in Equation Form71
3.1.1 Converting Inequalities into Equations71
3.1.2 Dealing with Unrestricted Variables73
3.2 Transition from Graphical to Algebraic Solution75
3.3 The Simplex Method80
3.3.1 Iterative Nature of the Simplex Method80
3.3.2 Computational Details of the Simplex Algorithm83
3.3.3 Simplex iterations with TORA92
3.4 Artificial Starting Solution94
3.4.1 M-Method94
3.4.2 Two-Phase Method98
3.5 Special Cases in Simplex Method Application103
3.5.1 Degeneracy103
3.5.2 Alternative Optima106
3.5.3 Unbounded Solution109
3.5.4 Infeasible Solution110
Selected References112
Comprehensive Problems112
Chapter 4 Duality and Sensitivity Analysis115
4.1 Definition of the Dual Problem115
4.2 Primal-Dual Relationships120
4.2.1 Review of Simple Matrix Operations120
4.2.2 Simplex Tableau Layout122
4.2.3 Optimal Dual Solution122
4.2.4 Simplex Tableau Computations126
4.2.5 Primal and Dual Objective Value130
4.3 Economic Interpretation of Duality132
4.3.1 Economic Interpretation of Dual Variables132
4.3.2 Economic Interpretation of Dual Constraints135
4.4 Additional Simplex Algorithms for LP137
4.4.1 Dual Simplex Method137
4.4.2 Generalized Simplex Algorithm143
4.5 Postoptimal or Sensitivity Analysis144
4.5.1 Changes Affecting Feasibility145
4.5.2 Changes Affecting Optimality155
Selected References161
Comprehensive Problems162
Chapter 5 Transportation Model and Its Variants165
5.1 Definition of the Transportation Model165
5.2 Nontraditional Transportation Models172
5.3 The Transportation Algorithm177
5.3.1 Determination of the Starting Solution178
5.3.2 Iterative Computations of the Transportation Algorithm182
5.3.3 Solution of the Transportation Model with TORA187
5.3.4 Simplex Method Explanation of the Method of Multipliers195
5.4 The Assignment Model196
5.4.1 The Hungarian Method197
5.4.2 Simplex Explanation of the Hungarian Method202
5.5 The Transshipment Model203
Selected References208
Comprehensive Problems208
Chapter 6 Network Models213
6.1 Network Definitions214
6.2 Minimal Spanning Tree Algorithm215
6.3 Shortest-Route Problem220
6.3.1 Examples of the Shortest-Route Applications220
6.3.2 Shortest-Route Algorithms224
6.3.3 Linear Programming Formulation of the Shortest-Route Problem234
6.3.4 Excel Spreadsheet Solution of the Shortest-Route Problem237
6.4 Maximal Flow Model239
6.4.1 Enumeration of Cuts240
6.4.2 Maximal Flow Algorithm241
6.4.3 Linear Programming Formulation of the Maximum Flow Model250
6.4.4 Excel Spreadsheet Solution of the Maximum Flow Model250
6.5 Minimum-Cost Capacitated Flow Problem252
6.5.1 Network Representation252
6.5.2 Linear Programming Formulation254
6.5.3 Capacitated Network Simplex Algorithm259
6.5.4 Excel Spreadsheet Solution of the Minimum-Cost Capacitated Flow Model265
6.6 CPM and PERT266
6.6.1 Network Representation267
6.6.2 Critical Path (CPM) Computations272
6.6.3 Construction of the Time Schedule275
6.6.4 Linear Programming Formulation of CPM281
6.6.5 PERT Networks283
Selected References286
Comprehensive Problems286
Chapter 7 Advanced Linear Programming289
7.1 Simplex Method Fundamentals289
7.1.1 From Extreme Points to Basic Solutions290
7.1.2 Generalized Simplex Tableau in Matrix Form294
7.2 Revised Simplex Method297
7.2.1 Development of the Optimality and Feasibility Conditions298
7.2.2 Revised Simplex Algorithm300
7.3 Bounded Variables Algorithm305
7.4 Decomposition Algorithm312
7.5 Duality322
7.5.1 Matrix Definition of the Dual Problem322
7.5.2 Optimal Dual Solution322
7.6 Parametric Linear Programming326
7.6.1 Parametric Changes in C327
7.6.2 Parametric Changes in b329
7.7 Karmarkar Interior-Point Method332
7.7.1 Basic Idea of the Interior-Point Algorithm332
7.7.2 Interior-Point Algorithm334
Selected References344
Comprehensive Problems344
Chapter 8 Goal Programming347
8.1 A Goal Programming Formulation347
8.2 Goal Programming Algorithms352
8.2.1 The Weights Method352
8.2.2 The Preemptive Method354
Selected References359
Comprehensive Problems359
Chapter 9 Integer Linear Programming361
9.1 Illustrative Applications361
9.2 Integer Programming Algorithms372
9.2.1 Branch-and-Bound (B&B) Algorithm373
9.2.2 TORA-Generated B&B Tree379
9.2.3 Cutting Plane Algorithm384
9.2.4 Computational Considerations in ILP389
9.3 Solution of the Traveling Salesperson Problem390
9.3.1 B&B Solution Algorithm393
9.3.2 Cutting Plane Algorithm396
Selected References397
Comprehensive Problems397
Chapter 10 Deterministic Dynamic Programming401
10.1 Recursive Nature of Computations in DP401
10.2 Forward and Backward Recursion404
10.3 Selected DP Applications406
10.3.1 Knapsack/Flyaway Kit/Cargo-Loading Model407
10.3.2 Workforce Size Model415
10.3.3 Equipment Replacement Model418
10.3.4 Investment Model421
10.3.5 Inventory Models425
10.4 Problem of Dimensionality425
Selected References428
Comprehensive Problems428
Chapter 11 Deterministic InventoryModels429
11.1 General Inventory Model429
11.2 Static Economic Order Quantity (EOQ) Models430
11.2.1 Classic EOQ Model430
11.2.2 EOQ with Price Breaks435
11.2.3 Multi-Item EOQ with Storage Limitation439
11.3 Dynamic EOQ Models443
11.3.1 No-Setup Model444
11.3.2 Setup Model448
Selected References460
Comprehensive Problems460
Chapter 12 Review of Basic Probability463
12.1 Laws of Probability463
12.1.1 Addition Law of Probability464
12.1.2 Conditional Law of Probability465
12.2 Random Variables and Probability Distributions467
12.3 Expectation of a Random Variable469
12.3.1 Mean and Variance of a Random Variable470
12.3.2 Mean and Variance of Joint Random Variables471
12.4 Four Common Probability Distributions474
12.4.1 Binomial Distribution474
12.4.2 Poisson Distribution476
12.4.3 Negative Exponential Distribution477
12.4.4 Normal Distribution478
12.5 Empirical Distributions480
Selected References489
Chapter 13 Forecasting Models491
13.1 Moving Average Technique491
13.2 Exponential Smoothing495
13.3 Regression497
Selected References501
Comprehensive Problem502
Chapter 14 Decision Analysis and Games503
14.1 Decision Making under Certainty-Analytic Hierarchy Process(AHP)503
14.2 Decision Making under Risk513
14.2.1 Expected Value Criterion514
14.2.2 Variations of the Expected Value Criterion519
14.3 Decision under Uncertainty527
14.4 Game Theory532
14.4.1 Optimal Solution of Two-Person Zero-Sum Games532
14.4.2 Solution of Mixed Strategy Games536
Selected References543
Comprehensive Problems543
Chapter 15 Probabilistic Dynamic Programming547
15.1 A Game of Chance547
15.2 Investment Problem550
15.3 Maximization of the Event of Achieving a Goal554
Selected References558
Comprehensive Problem558
Chapter 16 Probabilistic Inventory Models559
16.1 Continuous Review Models559
16.1.1 “Probabilitized” EOQ Model559
16.1.2 Probabilistic EOQ Model562
16.2 Single-Period Models567
16.2.1 No Setup Model567
16.2.2 Setup Model (s-S Policy)571
16.3 Multiperiod Model573
Selected References576
Comprehensive Problems576
Chapter 17 Queuing Systems579
17.1 Why Study Queues?579
17.2 Elements of a Queuing Model581
17.3 Role of Exponential Distribution582
17.4 Pure Birth and Death Models (Relationship Between the Exponential and Poisson Distributions)585
17.4.1 Pure Birth Model586
17.4.2 Pure Death Model590
17.5 Generalized Poisson Queuing Model593
17.6 Specialized Poisson Queues597
17.6.1 Steady-State Measures of Performance599
17.6.2 Single-Server Models602
17.6.3 Multiple-Server Models611
17.6.4 Machine Servicing Model—(M/M/R):(GDIK/K),R<K621
17.7 (M/G/1):(GD/∞/∞)—Pollaczek-Khintchine (P-K) Formula624
17.8 Other Queuing Models627
17.9 Queuing Decision Models627
17.9.1 Cost Models627
17.9.2 Aspiration Level Model632
Selected References634
Comprehensive Problems634
Chapter 18 Simulation Modeling639
18.1 Monte Carlo Simulation639
18.2 Types of Simulation644
18.3 Elements of Discrete Event Simulation645
18.3.1 Generic Definition of Events645
18.3.2 Sampling from Probability Distributions647
18.4 Generation of Random Numbers656
18.5 Mechanics of Discrete Simulation657
18.5.1 Manual Simulation of a Single-Server Model657
18.5.2 Spreadsheet-Based Simulation of the Single-Server Model663
18.6 Methods for Gathering Statistical Observations666
18.6.1 Subinterval Method667
18.6.2 Replication Method669
18.6.3 Regenerative (Cycle) Method669
18.7 Simulation Languages672
Selected References674
Chapter 19 Markovian Decision Process675
19.1 Scope of the Markovian Decision Problem:The Gardener Problem675
19.2 Finite-Stage Dynamic Programming Model677
19.3 Infinite-Stage Model681
19.3.1 Exhaustive Enumeration Method681
19.3.2 Policy Iteration Method Without Discounting684
19.3.3 Policy Iteration Method with Discounting687
19.4 Linear Programming Solution690
19.5 Appendix: Review of Markov Chains693
19.5.1 Markov Processes694
19.5.2 Markov Chains694
Selected References700
Chapter 20 Classical Optimization Theory701
20.1 Unconstrained Problems701
20.1.1 Necessary and Sufficient Conditions702
20.1.2 The Newton-Raphson Method706
20.2 Constrained Problems708
20.2.1 Equality Constraints708
20.2.2 Inequality Constraints723
Selected References730
Chapter 21 Nonlinear Programming Algorithms731
21.1 Unconstrained Algorithms731
21.1.1 Direct Search Method731
21.1.2 Gradient Method735
21.2 Constrained Algorithms738
21.2.1 Separable Programming739
21.2.2 Quadratic Programming747
21.2.3 Geometric Programming752
21.2.4 Stochastic Programming757
21.2.5 Linear Combinations Method761
21.2.6 SUMT Algorithm763
Selected References764
Appendix A Review of Vectors and Matrices765
A.1 Vectors765
A.1.1 Definition of a Vector765
A.1.2 Addition (Subtraction) of Vectors765
A.1.3 Multiplication of Vectors by Scalars766
A.1.4 Linearly Independent Vectors766
A.2 Matrices766
A.2.1 Definition of a Matrix766
A.2.2 Types of Matrices766
A.2.3 Matrix Arithmetic Operations767
A.2.4 Determinant of a Square Matrix768
A.2.5 Nonsingular Matrix770
A.2.6 Inverse of a Nonsingular Matrix770
A.2.7 Methods of Computing the Inverse of Matrix771
A.3 Quadratic Forms775
A.4 Convex and Concave Functions777
Selected References777
Problems777
Appendix B TORA Primer779
B.1 Main Menu779
B.2 Input Mode and Format780
B.3 Input Data Screen780
B.4 Solve/Modify Menu781
B.5 Output Format782
B.6 Output Results782
Appendix C Statistical Tables785
Appendix D Partial Answers to Selected Problems789
Index825